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Abstract: We present a relationship between an alternative estimation procedure of ARMA models based on
an irmovative outlier framework and the Kalman Filter Smoothers (KFS) estimation of intervention effects for
outliers generated by special events. The intervention model describes how the events manifest themselves
in the observations. The results are asymptotically equivalent to the estimation of ARMA parameters
based on a generalized t-distribution for the residuals with a mixture interpretation relying on the mnovative
outlier framework. The joint estimation of the estimators, if considered, supports the normality test of

the residuals.
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INTRODUCTION

As many time series are subject to external influences,
they are often characterized by their autocorrelation. In
our case, the series that are suspected or known to be
under the influence of particular exogenous processes,
which could be sudden or unexpected, 1s of mterest. They
may take the form of natural disasters, strikes, wars, or an
introduction of a new set of rules. Here, the process under
consideration is termed intervention and are, by nature
hard to characterize m terms of quantities that can be
measured. They are often modeled by the mtroduction of
dummy regression variables, which represent the
influence that an unquantifiable, external event has on
the series.

In tume series processes, anomalous observations
sometimes occur in patches. In order to account for this
and to detect stretches of over influential observation,
Bruce and Martin (1989) put forward leave-k-out
diagnostics. The parameters of the model fitted to the
full data set are compared with those generated by fitting
the model to the data when a stretch of k points are taken
to be missing. This approach 1s somewhat limited.
There are many types of intervention, such as level
shifts and slope changes, which do not fit into the
leave-k-out approach. The method also requires a
great deal of computationally mtensive parameter
re-estimation. These problems are, to a certain extent,
addressed by Atkinson et al (1995) who use score

statistics to approximate the change in hyperparameters
when interventions are introduced to a series.

ARMA (Autoregressive Moving Average) models
are one of the most widely used approach for stationary
time series. Applications of these techniques abound in
€CONOoIMICcs, The traditional
approach to ARMA models has implicitly assumed that
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the underlyng residuals are normally distributed;
consequently, minimizing the sum of squares of
asymptotically equivalent to maximum likelihood
estimators.

A commeon criticism of the technique of least squares
15 that it places too much emphasis on outliers. The
distributions of the underlying residuals in regression and
time series models 1s unknown and may be characterized
by a higher incidence of outlier than i1s consistent with a
normal distribution. These might be due to either thick
tailed or contaminated distributions. If the residuals are
not normally distributed, estimates based upon a least
squares criterion will be neither efficient nor maximum
likelihood and may be very sensitive to the occurrence
of outliers.

This limitation of the least squares methodology has
lead to several alternative approaches. One approach is
to specify a more general distribution for the residuals,
which may include thick tailed distribution and
consider the comesponding maximum likelihood
estimators. It should be emphasized that the actual
density encouraged in practice need not coincide with the
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assumed distribution in Maximum Likelihood (MLE)
estimation. Consequently,
estimators are sometimes referred to as Quasi Maximum
Likelihood (QML) estimators. Robust estimation
techniques have provided another approach to
estimation, which do not depend upon a particular
distribution. However, in each case the selection of the
hypothesized density robust of the actual distribution of
the unknown and unobserved residuals.

There body of
demonstrating that the properties of least squares
estimators in regression models are sensitive to the
nature of the random disturbances. Several Monte Carlo
studies substantiate the sensitivity of least squares
estimators obtamed by mimmizing the sum absolute
deviations (LAD) if the emror terms are normally
distributed, but this may be reversed if the error terms
are generated from a thick tailed distribution such as
the double exponential or Cauchy, Oveson (1970),
Smith and Hall (1972), Kadiyala and Murthy (1977),
Courtsey and Nyquist (1983). Andrews et al. (1972)
report the result of an extensive analysis of many
alternative robust estimators of location.

Much less 1s lknown about the properties of
alternative estimator of parameter in ARMA models.
Martins (1981), Martiin and Yohai (1985a, b) provide
excellent distribution of robust estimations techmques in
time series models and include many useful references.
Bustos and Yohai (1986) proposed two robust ARMA
estimators based on residual autocovariances.

Martins (1981) considered robust estimator known as
the M and General M (GM) estimator for times series
models. The M estimator can be viewed as a
generalization of maximum likelihood estimation and
was mtroduced as a estimator for location and regression
type problem by Huber (1964, 1973). The M estumators are
net qualitatively robust (Martin and Yohai, 1985).

Tt is well established that the presence of outliers can
have a dominating and deleterious effect on standard
location model estimators such as the least squares
regression, the least absolute deviation regression, or
even the generalized M-estimators (Maronna et af., 1979;
Donoho and Huber, 1983; He, 1991). Furthermore,
Sakata and White (1995) show that Quasi-Maximum
Likelihood regression (QML) estimators are in general
vulnerable to outliers.

The existence of outliers may not be helpful n
predicting future returns. However, they may unduly
influence the estimation and forecasting of financial time
series. Balke and Fomby (1994) and Van Dijk et al. (1999)
find that neglecting outliers can erroneously suggest
misspecification or madequate modeling.

the maximum likelihood

i5 a considerable literature
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PARAMETRIC RELATIONSHIP OF THE MODELS

Here, we display the relationship between the model
parameters of the innovative outliers and that of simple
interventions. We consider the ARMA (p, ¢) model
defined by

$B)Y, =0(B)e. (1)
Where p(B)=1-¢pB-$pB-...-pBand6(B)=1-6,B -
0.B -...- 0B represent assumed to have a modulus greater
than one. Furthermore, the residuals (€,) satisfy E(=,) = 0,
var(e,) = 0, comr(€,€,) = 0, t # 5. A consequence of this
specification and assumption is that (1) can be
equivalently represented as

Y. =p(B) 6(B) &, (2)

£ =0"B)dDB)Y. (3)

The residuals in (1) will be assumed to be distributed as a
Generalized T statistic (GT) defined by

GT(e ;B.p.q)=
p
2B q" B(lp, q)(1+/e [ /P* g*'®

4

-00< € <0,

Equation 4 defines a very rich family of density, which
includes the power exponential, or Box-Tiao (BT)

pe-{ l/B)* "

. (5)
28T (1/p)

BT(e;B.p)=

As a limiting case as q — = The GT distribution is
symmetric about the origin and is flexible enough to
include the t density (p =2, p = o' 2), the normal (p = 2,
B =0v 2, g~ «), double exponential (p =1, g~ <) and the
Cauchy (p = o/ 2, p=2, g=1/2) as special cases.
Consequently, thuick or thin tailed
distributions. The GT can be shown to arise as a result of
mixing a BT variate with a stochastic scale parameter,
which 1s distributed as an inverse generalized gamma
(Mc-Donald and Butler, 1987). This is a form of an
innovative outlier model, which can be associated with
thick tails.

In the state space form, an innovative outlier model is
obtained by setting X, = 0 and W; = H in the general
specifications

it can mclude

y,=Xtd+Ztat+G, € (6)
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. =W.O0+ Tta, + He, @)

yielding D(i) = ZT"H = Xm0, on substitution in
the equation

0, t=1,...1-1
D, ()= ¢X. t=1,
Z, t=1+1,...n

(&)
Ty W,

t-1, I+1 t*

Where X, and W, model the special events or shock at
time t and are referred to as the shock design, D(i) is the
intervention shape such that for k > 0, 7, is the coefficient
of B* in the expansion of 1/$(B) and T, = O for k< 0. Thus,
the signature Dy(1) 1s made up of coefficients m the
polynomial expansion of O(B)/¢(B), that is, the
coefficients in the infinite MA representation.

To treat an ARMA model m the state space form,
Tsay (1988) considers models of the form

B
= OB

6(B)

&, + da(B)E, (1) @)

Where £0(1) 1s an ndicator function which takes the
value 1 when t=i and is O otherwise. The ratio 68(B)/¢p(B)
defines the null model while w(B) £(1) defines the
signature and & is the scale parameter. Tsay defines
additive outliers, for which w (B) = 1 and mnovative
outliers, for which w(B) = 8(B)/b(B). These are equivalent
to our measurement and state disturbance shocks,
respectively. Thus our intervention effects parameter
1s equivalent to the scale parameter in the innovative
outlier model (ie., d = ).

A DIAGNOSTIC STATISTIC FOR
INTERVENTION EFFECTS

To estimate & having the same magnitude as P, Tsay
rewrite the intervention model as

0 ¢(B)

6(B)

9B)

: (10)
o(B)

o(B)E Q)+e,

where the left hand side defines v, the infinite sample mull
model innovations. Letting A7) = {G(BYO(B)} w(B)E(i),
a quantity which corresponds to the filtered special event
signature, yields

¥, = 8A () +e,. (1D
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Tsay (1988) regresses the v,”s on A(i) for each origin
1. The values of A{1) are determined by the choice of w(B).
In the immovaticnal outlier case, w(B) = G(BYH(B)
implying that 4,(1) = £(1). The Generalized Least Squares
(GLS) estimate of he intervention parameter 0, is used to
devise statistics to measure the sigmficance of an
intervention at t = 1. The null model defines the covariance
matrix r'% = cov (y). Standard GL.S arguments vield.

5 =D (T D DAYT! S

(12)

cov (8,) = {DAYZ "D ()}’

(1) = cov {DAYE" y} Eq. 12 simplifies to
5 -8, .v@) -og (13)

Where
s, = DT 'y, 8 =DHE! Diiy o cov(s) (14

The s, are referred to as the intervention contrasts
sufficient estimating the
intervention effects. They are the analogue of treatment
contrasts for estimating treatment effects in the standard
design of experiments. If the data set is uncorrelated, X is
a diagonal matrix, allowing X and thus &, to be calculated
directly from (12). This is equivalent to the usual approach
regressing the data y on the intervention effect D(i). In the
extreme case where X =T and D(i) is 0 everywhere except
in a single position where it is one the estimate of  is the
observation y..

The hypothesis of no special event, & = 0, is tested
with the usual statistic,

which are statistics  for

Enil{cov(fnil)}71 B, =6 “(s"8's) (15)
In practice, &7 is replaced by the normal biased Maximum
Likelihood Estimate (MLE). The MLE of ¢° assuming
5 = 0is given by & = (yI7 y)n. This estimate is
adjusted to give the MLE under the hypothesis that 8 #
0. Assuming that all other hyper parameter estimates
remain fixed; &% =67 -n's', S7's; substituting this
adjusted estimate into (15) yields the test statistic

=878 8% ={6G 8 '-n ! (16)

Which has an approximate ’, distribution where p is the
rank of S, The estimate of the standard error of each
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component of Si is given by the square root of the
appropriate diagonal entry in ¢S, Dividing each
component by its estimated standard emror gives a
statistic, which is analogous to the regression t-
statistic.

The actual implementation of the methods requires
specification of cov (y) = ¢°% and the mtervention
signature D(1). These are modeled using a state space
description of the data y. An efficient method for
computing the statistic ;" or the t-statistic is also crucial.
Defining the smoothation vector u= %'y Eq. 14 yields
s, = D(1)'u.

Thus, all of the interventions statistics t° can be
computed from smoother output. Our method is direct
papers and, n addition to computational benefits,
provides insights into the nature of intervention process.
It allows the sunultaneous testing of a wide varety of
outlier effects.

Established approaches (Tsay, 1986; Atkmson ef af.,
1997) to computing (14) and estimating & involve
transforming the observations and the signature matrix.
By applying the appropriate linear operations, one data
can be transformed to the innovations, which are
uncorrelated. Applying the same transformation to the
regression variables D(1) allows us to generate s, and S
and thus calculate the estimate & and its covariance
matrix. Using the lower triangular matrix L to denote the
filtering transformation into 0 =Ly where v ={_v' ... ¥'.) is
the vector of Kalman filter innovations that ™ = L'F'L so
s;= (LD (iYF'v where F = 0 “cov(v) = diag {F,...F,}. The
entries m LD(1) can be calculated by applying the filter to
the column of the regression variable D(1). Using this
approach, for each origin i and each type of intervention
the columns of D(1) must be filtered.

CONCLUSION

Thus the introduction of special events is a powerful
tool for analyzing departures from a fitted null model.
Many forms of aberrant behavior can be modeled
efficiently by special events to the transition equation of
a state space representation. We establish that the scale
parameter assoclated with our immovative outlier model 1s
empirically equivalent to the intervention effects estimate.
Thus the characteristic features of the generalized t-
distribution and that of a state space model are
transformable as any number of interventions, can be
generated using the output of a single null model KFS
run. The theoretical methods in this research can be
extended to several other models.
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