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Abstract: This study 1s concerned with dynamical behavior of Euler Bernoulli beam traversed by umform
partially distributed moving masses. The governing partial differential equation was systematically analyzed
and the analytical numerical solution for classical boundary condition obtained. The deflection of the Euler-
Bernoulli beam is calculated under various specified conditions and the results displayed graphically.

It 18 found that moving force solution 1s not an upper bound for an accurate selution of the moving

mass problem.
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INTRODUCTION

The dynamic analysis of the behavior of an elastic
beam traversed by moving loads has been an mnteresting
problem in several fields of Engineering, Applied Physics
and Applied Mathematics and continue to motivate a
variety of investigations (Fryba, 1972; Esmailzadeh and
Gorashi, 1992, 1993).

A comprehensive review of the subject for the
vibration of structure resulting from moving loads can be
found in Fryba (1972), Esmailzadeh and Gorashi (1993),
Esmailzadeh and Gorashi (1992) have mvestigated many
cases of moving load problems. Recently vibration
analysis of beams traversed by uniform partially
distributed moving masses was studied by Esmailzadeh
and Gorashi (1995).

The research presented in this study is an extension
of the work of Esmailzadeh and Gorashi (1995), Akin and
Mofid (1989) in which the complementary acceleration and
the centripetal acceleration, which had been neglected for
many years, are now being taken into consideration.

The assumptions adopted here correspond to those
of Esmailzadeh and Gorashi (1995), Akin and Mofid (1989).
The analysis presented in this study s for smply
supported Bemoulli-Euler beam that should be easily
applied to many situations and variety of boundary
conditions.

The main objectives study are to:

*  Determine the response amplitude of the deflection
of the moving force with respect to the mass of the
load.

*  See the behavior of the amplitude of the moving
force with respect to time
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Fig. 1: Mathematical model of the problem

¢ Determine the vibration in the lateral displacement of
the moving force with respect to time, affixed length
of the beam and various values of the mass of the
load.

»  Determine the response amplitude of the deflection
of the moving mass with respect to time.

»  Determine the vibration in the displacement of the
moving mass with respect to time.

MATHEMATICAL MODEL OF THE PROBLEM

With reference to Fig. 1, it 1s assumed that we have
a uniform Euler-Bernoulli beam carrying a mass M of fixed
length €, at time t = 0s. The load M is situated at the left
hand support. The load M 1s partially distributed and
advancing umformly along the beam of length L with a
constant velocity V.

PROBLEM FORMULATION
Based on Esmailzadeh and Gorashi (1995),

Alkin and Mofid (1989) the equation governing motion
of a Bemnoulli-Euler beam under the moving mass, m,
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neglecting the damping, the rotatory inertia and shearing
force effects can be written as:
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Where E is the modulus of elasticity, T is the second
moment of area for the beam’s cross-section, m is the
mass per umit length of the beam, W (x, t) 13 the deflection
of the beam, x 1s the spatial coordinate, t 1s the time and
F (x,t) is the load inertia (the resultant concentrated force
caused by the moving mass).

In thus system, when the effect of the moving load on
the transverse displacement of the beam 1s considered,
the load inertia takes the form

S e _e S _:_S
F(X,t)—e[ Mg MVW]|:H{X e’;+2j H{X £ 2}}
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Ox <0
Hix)= (3)
1x >0
Where
M= Mass of the load
V = The substantive acceleration operator
2 2 2
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€ =1Is the fixed length of the beam

H= The Heaviside umt function

g = Acceleration due to gravity

V =The constant velocity of the load

¢ = (V t+€/2) for the limiting condition as €—+ 0 one
obtains

S(x &)= JH[X £+ i H{X £ ‘;ﬂ (5

where 9 (x-0) 1s the Dirac delta function.
Recall the Dirac delta integral properties:

L
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The pertinent boundary conditions for the problem
under consideration can be any of the following classical
boundary conditions.

y(x,t):M:OatX:O orx=L (8)
ax
2
yx.t)= ¢ Y();’t) =0atx=0orx=L ©)
ax
2 3
Iyt _9 Y(X’t)ZOatX:Oorx:L (10)
ax* o’
3
GO _ gyt =0Oatx=0o0rx=L an
ax o’
The initial conditions are
Y(x,0)=0 (12)
HEH 13)
ax
Substituting (4) mto (2) we have
2 2 2
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In Eq. 14, the first term in the first square bracket
describes the constant gravitational force, while the
second term accounts for the effect of the direction of the
transverse deflection y (x, t), the third term 1s for the
complementary acceleration and the fourth term is for the
centripetal acceleration. The second square bracket
describes the Heaviside functions.

Considering Eq. 5 and 14 would lead to the formation
for moving point masses (Esmailzadeh, 1995; Akin and
Mofid, 198%9). However, in the present discussion € is not
limited to be small length.

OPERATIONAL SIMPLIFICATION OF THE
GOVERNING EQUATION

We assume the transverse vibration of the beam as:
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Wix, 0= Gt () (13) Fx,0)= ) Xi(0us(t) (16)

i=1 i=1

Where ¢.(t)’s are unknown functions of time X(x)’s
the normalized deflection curve for thei® mode

of the vibrating prismatic beam.

We further assume that the lead function can be Substitutmg Eq. 15 and 16 into 1 and 14,
expressed as: respectively we have.

Where W, (t)’s are unknown functions of time and
X, (x) are as said earlier.
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It is noted that Eq. 17 has two sets of unknowns viz, the ¢.s and the 1i’s. This naturally makes Fq. 17 highly
uncoupled. To reduced the high degree of couple ness we would have to determine one of these sets of unknowns, we
remarked, however, that we find it convenient to determine the ¥ s, hence multiply the right hand side of Eq. 17 by the
known normalized equation over the length of the beam to obtain

L o0 . [=4) . [=4)
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Expanding Eq. 18 we have
Mg [ M| e
-8 [0 B g+ S Hor- 6o 5 ax- 2 gwia)jxi(x)xj(x){H(x—a+§>+H(x—a—g) dx
0 i= 0
MV e < < MV? | ¢
A Zwi(t)-‘-Xi’(x)Xj(x){H(x—§+E)+ H(X—E—E)}dx— - Zwi(t)IXi"(x)Xj(x) (19)
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© L
{H(x -E+ g) +Hx-&- %)}dx = Zwi(t)in(x)Xj(x)dx
i=1 0

Remarks
(1)To evaluate the left hand side of Eq. 19, we simply noted that since the normalised deflection curve X, 1.1, 2, 3...... n
are orthonormal, we have

0,%;&]: (20)
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Substituting 20-24 into Hq. 19, we have
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Substituting Eq. 25 into 16 and the result back into the right hand side of Eq. 9, we finally obtained the approximate

governing equation of motion as follows:

(25)
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To simphtfy Eq. 26 we noted that for free vibration of an Euler-Bernoulli beam,

XV (X B X (x)=0 27
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Where B = mp® andp’is the natural frequency of the beam
EI

2
; mp~X; 28
XY 00=pt X, = pEI i (28)

By putting Eq. 28 into 26, we have
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Equation 29 is a set of coupled linear second order ordinary differential Hquations, by sclving Eq. 16 the
values of W(t)s can be determined. When substituting these values into Eq. 21 the desired solution for the
vibration of the beam, under different boundary conditions and with any number of model shapes can be
determined.

Proper consideration of Eq. 24 will result into two mteresting special cases of the problem which may be analyzed
as follows:

¢« If £ tends to zero, then the model would revert to the problem of a single point mass traveling on a suspension
bridge which has been fully treated by some scholars (Esmailzadeh and Gorashi, 1995, Akin and Mofid, 1989).

¢ Ifthe inertia effect of the load is ignored then Eq. 24 becomes uncoupled. This can then be verified by replacing Mg
by P and Mby zero in Eq 24. Therefore, it only the load inertia effect which results in the coupling of Eq. 24. Tt can
be concluded that the moving force solution 1s a special case of the more general form of the moving
mass one.

¢ Remark; to solve the above set of coupled Eq. 16, we need to know the exact form of the normalized deflection X (x).

As amatter of fact there exist various forms of X(x) depending on the vibration configuration of the beam.
SIMPLY SUPPORTED BEAM

For the illustration of the result of the foregoing analysis, we considered the case of a simply supported beam. The
normalized deflection curves X (x) for a simply supported beam are

Xi(x) = %sin{%},izl,z,a.. (30)

We obtained the set of exact governing differential Equation for the vibration of the beam by deriving exact governing
Eq. 30 and evaluating the exact values of the integral in Eq. 11a-e, we have
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m$i(t)+mpf¢i(t)—ffi\/ﬁsm{mf}si [”‘EJ Zq) (){ Cosa@])Slné@])}

21
j e MV 1 ome, oooomEL |
Z (){ cos—=(i+ j)sin— (1+])} Z¢(){J7(l+j)51n2]_,(l+])mnL(I+J):|
ZMVZda()N_(lj) e [”‘]ZM)N_ i o—nsm%(l—p}
MV in ne g MVZi_’n \/21 me, o omE
[ ij){((ﬂ) DG oos T2+ )|+ [L};Mt{ L(i+j)COS2L(1+J)COSL(1+J)}

1=123...

(1)

For the case of of i = j, the expression involved shouldbe V =12kmh™" M =704 kgm 'g = 98] ms,

replaced by ™€ m=70kgm"’, t=01sand1.0s,e=01mand1.0m,
2L L=10m. h=001 m.

We solved the system of Eq. 26 by numerical Figure 2 illustrates the displacement response of the
procedure called Finite difference method. simply supported Bernoulli-Euler beam for both cases of
Remarks moving force and moving mass for fixed value of £ and t.
In the remark, we considered the solutions of two cases Clearly the result shows that the response amplitude due
Viz: to the moving mass is greater than that due to the moving

force. As a result of this the moving force 1s not an upper
*  The moving force Euler- Bernoulli Beam case bound for the accurate solution for the moving mass
¢ The moving mass Euler-Bernoulli Beam case problem. Figure 3 and 4 depict the deflection of the simply
supported Bernoulli-Euler beam for both the moving force
Casel and moving mass, respectively. In the graphs the

Moving force euler-bernoulli beam problem: We mean  deflection Y (x, t) 1s plotted agamst various values of x for
the case in which only the force effects are taken into various time t. It is noted that, as time t increases, the

consideration. For the particular case the governing amplitude of deflection increases for both the moving
equations obtained by neglecting all terms appearing after  force and moving mass problem.
the first term on the right hand side of the Eq. 31. The deflection profiles of the elastic Euler-Bernoulli
beam for various values of € for a fixed length of the beam
Case 11 for both moving force and moving mass problem are
Moving mass euler- bernoulli beam problem: This 15 the displayed in Fig. 5 and 6, respectively. It 15 observed that
case 1n which both the mertia effects and the force effects € mcreases with an increase in the amplitude of deflection
are retained i.e., the whole Eg. 31 is the moving mass for both cases of our consideration.
problem. 0.157
RESULTS AND DISCUSSION g 017 S Mo oo
m
To solve the two cases in our problem, we employed § 0.057
numerical method. (1.e., approximate central difference g
formulae have been utilized for the derivative m Eq. 31, § ]
which are latter transformed to a set of N linear algebraic E
. . . . -0.05-
equations, which are to be solved for each interval of time.
Regarding the degree of approximations involved, in order o1 : : ,
to ensure the stability and convergence of the solution, 0 5 10 15
sufficiently small time steps have been utilized. The Time (1}
package MATLAB was used for the following numerical Fig. 2. Displacement responce of the simply supported
data which are the same as those chosen by (Esmailzadeh Euler-Bernoulli beam for both moving mass and
and Gorshi, 1995). E = 2.07=<10" Nm = I=1.04x107"m", moving force
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Fig. 3. Deflection of the simply support Bernoulli Euler
for the moving force at diffirent time T.
(I.e., T = 058 and 1.0s) for a particular m =
7.04kg whene =0.1m
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Fig. 4: Deflection of the simply support Bernoulli Euler
for the moving force at diffirent time T. (Le., T =
0.5s and 1.0s) for a particular m = 7.04 kg when €
=01m
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Fig. 5: Deflection profile of Euler-Bernoulli Beam for
both moving mass and moving force, when € =
0.1 m with 1 3 min for a fixed length of the beam
(L=10m)
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Fig. 6: Deflection profile of Fuler-Bemoulli Beam for
both moving mass and moving force, when
£= 0.1 m with in 3 mun for a fixed length of the
beam (I. =10 cm)

CONCLUSION

This study presented dynamical behaviour of Euler-
Bernoulli beam traversed by uniform partially distributed
moving masses. The theory based on orthogonal
functions and mertial effect of the load and the results
indicate that the governing differential Equations of
motion can be transformed into coupled ordinary
differential equations. Hence, 1ignoring this effect (inertial
effect) result in solving a set of uncoupled lmear second
order differential equations which is the solution for the
corresponding moving distributed force and not the
moving distributed mass problem. In solving the
governing differential equations the techmque of central
difference expansions was employed.

It was observed that the length of the distributed
moving mass affects the dynamic response considerably,
this brings about the response amplitude due to the
moving mass to be greater than the moving force
amplitude which indicate that the moving force is not the
upper bound for the accurate solution for the moving
mass problem.

Furthermore, a comparison of the moving mass and
moving force (Fryba, 1972) results, indicated an at least
80% difference between the two results and thus shows
the importance of mcluding mass in real design conditions
where the velocity is high.

So also, in designing structures such as railway and
suspension bridges, the moving mass mertial effects 1s
very unportant and these effects should be borne in mind
with utmost care, because of the fact that moving loads
have a great effect on dynamic stresses in such bodies
and structures and cause them to vibrate intensively,
especially at high velocity.
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