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The Components of Stress on an Internally Pressurized Hollow
Circular Cylinder of the Blatz-Ko Material
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Department of Mathematics, School of Natural and Applied Sciences,
Alvan Tkoku College of Education, Owerri, Nigeria

Abstract: The problem of determining explicit formulas for a hollow cylinder under uniform internal pressure
1s the thrust of this study. The cylinder under consideration 1s made of the Blatz-Ko material 1. In obtaining
the required results, the radial displacement of the cylinder 1s sought by means of (an approximate) series

solution of an emerging boundary-value problem.
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INTRODUCTION

A substantial amount of research was done by
Chung et al. (1986) in investigating the solutions of the
problems of the Blatz-ko materials. The result of their
investigation in the aspect of a hollow circular cylinder is
the parametric representation of the radial displacement
of the cylinder as well as its components of stress. Away
from such parametric representation, Fjike and Erumaka
(2006) provided an alternative approach to the solution
of a similar problem. Their approach achieved a
transformation of an emerging non-linear boundary-value
problem to a form in which the non-linear boundary
conditions are amenable to lmearization. This done, a
solution may be sought via any genuine mathematical
procedure. Unfortunately, as much as this writer knows,
at present working mathematical formulas are still needed
for the computation of the components of stress on a
hollow circular eylinder under applied umform internal
pressure. This research seeks to address this problem.

In this study we shall formulate a boundary-value
problem for the axi-symmetric deformation of the hollow
cylinder whose mapping 1s given by

R, »>R:(1,6) —(R.&) (1

where (R, ®) is the polar coordinate of the deformed
region. The solution to the boundary-value problem
posed m this study shall be determined. The solution (1.e.,
the determination of the radial displacement R, (r) of the
cylinder) shall be sought by means of (an approximate)
series solution of the non-linear boundary-value problem.
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FORMULATION OF BOUNDARY-VALUE PROBLEM

We now consider the hollow circular cylinder under
an applied uniform internal pressure of magnitude P. Tn its
underformed configuration, let its cross-section be
defined by the region.

R, =[(r,®)r € (a,b),6 € (0, 2m)} (2)

where ¢ is the mnmer radius and 1s the outer radius. The
deformed region is given by the mapping

R, »R:(r,0)>(R,®) (3)

Where (R;, ©) is the polar coordinate of the deformed
region. Supposing that the deformation i1s an axi-
symmetric plain strain one, then we have

R =R = 0.R{1)eCab) (4)
®=0onR,

Let F be the deformation gradient tensor associated with
(). with this we have:

R 0 )
F=
o R
T

where R = dR/dr . The right Cauchy-Green deformation
gradient tensor B 13, in the present case,



Res. J. Applied Sci., 2 (4): 420-423, 2007

(6)

The tensor B is so defined in terms of the strain energy
function W (LT}, whose invariants I and T are

[=spB= P'{+ [R}
' (M)

1= (detBY = 2R
T

We find that the principal stretches associated with (3) are

% = R(rya, = X0 (®)
T

A class compressible isotropic elastic materials (including
the Blatz-ko) is characterized by the elastic potential
(Chung et al., 1986, Fjike and Erumaka, 2006)

W(I,J)—';G+ 2J4J ©)

Where =0 i3 the shear modulus of the materials at
infinitesimal deformations. If o 1s the stress tensor
assoclated with the plane deformation, then tensor o is
given by

G:%%B+WI= (10)

where the response functions ¢ (I, I) and W (I, J) are
defined in terms of W (I, T) and are given by

oW W (11)
AV
Consequently, we have
L2
2 3 2
b= p.zr g 1_r R3+rR (12)
2R R* R R’

Substituting (6) and (12) in (10) we get

2
3 3 2
r 0 1_r R3+ R 0
B RR’ R R’
o=u
r -2
0 3 0 17r3R +rR*
R R 2
L R R® /]
(13)
hence the components of stress
T
GRR(r)—MEI— _3 }
R R
I_3
GBB(I')_IJ.[I -
RR’
Oy =0y =0, 7€ (. b) (14)

Neglecting all body forces, we have the equation of
equiibrium as THill and Arrigo (1996) showed that
equilibrium equations for perfectly elastic compressible
matriels can be obtammed as Lagrange equations for the
variationals principles

8¢ [[ Z.10RARAZ }=0

where
the arguments of the strain energy function Yare defined

do s + he(Trn = o) =0,re{ab)
dr Thyg ’ ’
i.e.
dos R (G —Ogo) ore(ab) (15)

dr R

Equation (15) together with (14) yield the non-linear
ordmnary differential equation for R (r):

.. . . 4
FIR'R-R*R+1'R =0,re(ab) 16)
with the boundary conditions
O =— patr=a, oy =0atr=>b (17

In using (14), we may rewrite (17) as
R(a)R (a)—a[l-&-BJ RMR b)=b 18
u

In what follows we shall derive a solution to the
boundary-value problem (16), (18).
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SOLUTION OF BOUNDARY-VALUE PROBLEM

The first task here is to linearize the boundary
conditions (18). Recently, this method was applied by
Ejike and Hrumaka (2006) in solving the problem of
deformation of a rotating circular cylinder. Motivated by
this, we let

R'(r)= (1) (19)
With this, (16) becomest
. 3 .2 3 oA
[3rSf 3]33 S {] 'S =0 (20)
4 4
and (18) yields
g(b):f(ﬂf,s'(b):_bé (21)
3lp+p
where
5=
dr
We now seek a series solution, for S
(1), of the form
Sio=ar”+a,;r" " +a,r" . La =0, (22)

where a,,a;,a,.. and the index m are constants to be
determined. We obtain the necessary derivatives of S (1)
from (22) according as the requirements of (20) and
substitute accordingly, then we equate the coefficients of
the powers of r to zero. The result was shown mn Nzerem
(20086) to yield, for ™', m = 0 or 4/3 Beside the values,

there are no other real zeros of . For m = 4/3 we have
3(r) = alr% + aar_% + asr_% + .. (23)

where a,, a,... 8, (n =0, 1, 2...) are the non-vanishing

constants. From the result of the linear theory
(Timoshenko and Goodier, 1970) in which the
displacement R (r) is of the form.

(24)

B
R(ry=Ar+—,r=0
T

T Observe that the transformation (19) makes the present
Eq. (20) look more hideous than Eq. (16). The argument in
favour of (19) is that the linearization of the boundary
conditions makes solution more tractable.
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we let 3, (1)=S8(r) and assume T

y . 25
S0 = aer +a,r # (25)
3
4 [al . a]/ (38)
T
With thus, we have in the form
%
Rn(r):r[a1 +a_§] 27)
r
The boundary conditions, applied to (27) yield
v
a, = 21 2{1)2_212( £ J
b'—a n+p
(28)
2a’h’ K d
S
b’ —a n+p

On substituting (28) m (27) we obtain the radial
displacement

- T
b4
[[ ] }
p+p
R,@)=r 21 - (29)
b*—a }él
zazbz[l—(LJ —2}
p+p) r

In the section that follows we shall determine the
components of stress.

COMPONENTS OF STRESS

We refer to (29). Let

b
= 1 [bz_az[ H j ]
b —a’ w+p
(30)
B Qf‘zbzll—[ i ﬂ
b'—a L+p

T The justification of the choice of the first two terms of
(23) m (25) 13 on the basis of the rapid convergence of the
series (23)to S, () for large r (1), (see example (Chapra
and Canale, 1988; Theagwam and Onwuatu, 2000).
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Thus

. ; I—Q—E{oﬁ%j +27E [OHEZJ
RDRu(T)—T{O’H—EZJ 2r T _ Ar T
r 27p° {O(.+EJ
8r’

RIR,(n)=r’ [OHEZ]PLZ[CHEZJ_ }
r 2r r

Substituting (31) 1n (14) accordingly we obtain the
following components of stress

(3D

O (1) =1
- &’
8(ox® +B) - 36B(ax’ +B) + 54 (o +B) - 27’
(32)
Gunftr=ui|1- 2 (33)

(cc:r2 + B) [Z(arz + B)73B}
CONCLUSION

We have shown that given an axi-symmetric plane
strain  deformation (4) of homogeneous isotropic
compressible elastic (Blatz and Ko, 1962) material whose
elastic potential 15 (9), the determmation of the
deformation gives and rise to a non-linear boundary-value
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problem (16, 18). We have also shown that a step to the
solution to such a problem can be achieved by seeking a
function which linearizes the boundary conditions, as
achieved by (19) in the present case. This done, we relied
on the method of series solution, being informed that
function can posses a series representation, at least about
its ordinary pomt (s). The radial displacement (29)
obtained provides a working approximation. Finally, we
were able to obtain the components of stress (32, 33) ina
manner that engineers can apply with ease. Tt is hoped
that this work will be extended to an anisotropic material.

REFERENCES

Blatz, P.D. and W.L. Ko, 1962. Application of finite
elasticity to the deformation of rubbery materials.
Trans. Soc. Rheol., 6: 223-251.

Chapra, S.C. and R. P. Canale, 1988. Numerical Methods
for Engineer, (2nd Edn.), Mc Graw-Hill.

Chung, D.T., C.O Horgan and R. Abeyarantne, 1986.
The finite deformation of intemally pressurized
hollow cylinders and spheres for a class of
compressible elastic materials. Int. T. Solid Struct.,
22:1557-1570.

Ejike, UB.C.O. and EN. Erumaka, 2006. finite deformation
of rotating circular cylinder of Blatz-Ko material. J.
Math. Sei., 17: 63-71.

Hill, I.M. and D.J. Arrigo, 1996. On axially symmetric
deformation of perfectly elastic compressible
materials. Q. . Mech Applied, 49: 19-28.

Theagwam, V.A. and .U Onwuatu, 2000. Fundamentals of
Numerical Analysis, Divine Press, Owerri, Nigeria.

Nzerem, F.E., 2006. Stresses resulting from fluid flow in
pipes. M.Sc. Thesis, Fed. University of Tech. Owerr1
Nigeria.

Timoshenko, S.P. and I.N. Goodier, 1970. Theory of
elasticity, (3rd Edn.), Mc Graw-Hill, New York.



