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Abstract: Let A(x) be the representation of an element x in a group G. The representation A(x) may be real or
complex. The aim of this study is to distinguish when the character of A(x) is real and when it is not. This
distinction 1s linked with the notion of bilinear mvariants and to find out the situation in which 1f A(x) is complex
for some x whether it is equivalent as a representation to Q(x) such that Q(x) has a real coefficients for all xG.
This notion is equivalent to finding an invertible matrix T such that Q(x) = TA(x) T and Q(x) is real. It was also
proved in this study that for any complex irreducible orthogonal representation of a finite group G, the
representation Q(x) for every xG 1s equivalent to a real orthogonal representation.
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INTRODUCTION

Let A be a real or complex matrix with its transpose
denoted by A and its complex conjugate as. For a row
vector x = ( denote its quadratic form as q = xAx for the
case when A 1s symmetric. We observed that for a
quadratic for (Ledermann, 1977) there exists an invertible
matrix K such that

A=KK' (1

For A(x) which i1s a representation of xG, its

contragradient representation is given as

A) = (AT

Its character which is the character of A(x ) is
equivalent to the conjugate of the character of A(x).

Definition 1: Tet A(x) be a representation of a group G.
The mvertible matrix T is said to be a bilinear mnvariant of
Ax)if

AKITA (x)=T (2)
Lemma 2: A real representation of a finite group

possesses a bilinear mvariant 1f and only if its character 1s
real.

Proof: If %(x) is the character of A(x), xG. Then the
contragradient representation
A'(x)=(AET)).xeC. (3)

Has character x {(x™'), which is equal to (x). Hence
% 18 real if and only if the representation (3) 13 equivalent.
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This implies that there exists an invertible matrix T

such that
T'AG) T = (A(x D) = (Ax))' (4)
Equation (4) can be written as

AR TA' x)=T

which means that T 1s a bilinear invarant of A by
Tssacs (1976).

Lemma 3: Suppose that A is a real or complex irreducible
representation of a finite group G, with character %. Then
if ¢, and ¢, are bilinear invariants of A, then

0y = katy,

Where k is a non-zero number which may be complex
or real.

Proof: Suppose that o, and ¢, are bilinear nvariants of A.
Then by (4)

oy Ao, =0, A(x)o, =AY (x),x€G
Hence,
Ao, )= (oo, DAX)

By the corollary to Schur’s Lemma.
o, = kl where k is a scalar, which is clearly non-zero.

Lemma 4: Tet A be a real or complex irreducible
representation of a finite group G, with character %. Then
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if ¢« is a bilinear invariant of A, we have that either ¢ 1s
symmetric or it 18 skew- symmetric.

Proof: By hypothesis
ARCA ) =a
Transposing this equation we have that
AR A =

Thus if ¢ is a bilinear invariant of A. So 1s ¢’ It
follows from Lemma 3 that

ol = ro,
where 1 is a number. And by transposing
a=ru
On eliminating o' between these equations we find that
a=r'a
Therefore r* = 1 so that either r = 1 or r = -1. This
implies that either ¢=¢' (symmetric) or ¢= -a' (skew
symmetric).
Theorem 5: Let g = xAx' be a non-zero quadratic form,
where A 13 a symmetric matrix which may be real or
complex. Then there exists an integer r satisfying l<r<n

and an mvertible matrix K such that

q=74+7%,+..7 > Wherex =zK

when r =n, we have that

A=KK' (5)

The real quadratic form q = xAx and the real
symmetric matrix A are said to be positive definite if for
every non-zero vector u, we have that uAu~0. We then
have,

Lemma 6 (Ledermann, 1977): Tet A be a positive
definite real matrix. Then, there exists a real invertible
matrix M such that

A= MM

We recall that a square matrix N 1s said to be
orthogonal 1f
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NN'=N'N =1

where 1 13 the 1dentity matrix.
A complex representation I(x) of G is called
orthogonal if for each x€G, we have that

IOT @) =T @Ix) =1 (&)
An nxn matrix H is called Hermitian if
H'=H (7)

Now if H 1s a Hermitian matrix and 1f u 1s a complex
row vector, then

h(u) = ulu'

is a real number and H is said to be positive definite if
h{u)=0 where uz 0. We also recall that every positive
definite Hermitian matrix 1s nvertible and if H 1s positive
definite so are H,H and H'. The Hermitian matrix K is said
to be a hermitian invariant of the representation A(x) for
xe€G if K is positive definite and

AGK ATA (x) =K, forxeG

Theorem 7: Every representation A(x) of a finite group G
possesses Hermitian invariants.

Proof: For A(x), let

K=Y A(b)A(b) (8)

And 1t 1s easily verified that K i1s a Hermitian invariant of
A(x). We note that if K 1s a Hermitian mvariant of A(x), so
is

H

=K
wheref} is an arbitrary constant.

We state without proof the Schur’s Lemma and its
corollary which states that if A(x) and B(x) are two
ureducible representations over a field f of a group G and
that there exists a constant matrix T over f such that

TA(x) =B(x)T

for xe G, then either T = O or T is non- singular so that
AX)=TBE)T then T=0I, where Iis the identity matrix.
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RESULTS

Theorem 8: Let A be an urreducible real or complex
representation of a finite group G with % as its character.
Then x is real and that A is equivalent to a real
representation if and only if it has a real or complex
symmetric bilinear mvariant.

Proof: Suppose that x is real and that a is equivalenttoa
real representation. Then there exists an invertible matrix
T such that

TAX) T=Bx),x=G
Q=3 B(y)B'(y)

yel

@)

Where B(x) is real. Let

Clearly Q is a real symmetric matrix which is positive
definmite and therefore mnvertible. As i Ledermann(1977)
1t can be shown that

BQB'(x) = Q, xeG
Substituting for B(x) from (9) we obtain that,

ACA (x)=CxeC (10)
Where C = TQ T!

Evidently Cis an invertible real or complex symmetric.
Thus (10) establishes the fact that A has a symmetric
bilinear invariant.

Conversely, suppose that (10) holds, where C is an
mvertible symmetric matrix. By (1), there exists an
mvertible matrix D such that

C=DD!
We can therefore rewrite (10} as
(D ADYD 'AGOD ! =1
Thus the representation
Exx) =D 'AXD
Which is equivalent to A(x), is a real or complex
orthogonal representation. Thus A(x) is equivalent to a

real representation and its character % 1s also real.

Theorem 9: Let A be an irreducible real or complex
representation of a finite group G with character %. Then
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% is real and A is not equivalent to a real representation if
and only if it has a real or complex skew-symmetric bilinear
invariant.

Proof: Suppose that A(x) is not equivalent to a real
representation but its character is real. Then A(x) is
equivalent to 4 (x), so the character of A(x) 1s real. By
Lemma 2, A(x) has a bilinear invariant which must be
either symmetric or skew-symmetric. But it cannot be
symmetric, because this would imply that A(x) is of
Theorem 8. Hence A(x) has a skew-symmetric mvariant.

Conversely, suppose that A(x) has a skew-symmetric
invariant. Then it is not like Theorem 8, because it cannot
also have a symmetric invariant as in Lemma 4. Since A
has a bilinear invariant, its character 1s real. Therefore A
1s equivalent to A . Thus the Theorem.

Theorem 10: Let A be an irreducible real or complex
representation of a finite group G with character ». Then
% 1s complex, A and A are mequivalent and neither is
equivalent to a real representation if and only if it has no
bilinear invariant.

Proof: Let % be the character of A. Then both A and A”
by Eq. (3) we have the character ¥ and are therefore
equivalent. Now the hypothesis of the theorem holds if
and only if A is equivalent to A", that is A is not
equivalent to A . Hence, A and A are mequvalent
irreducible representations. By Schur’s Lemma the only
solution of

AT =TA'x),x€G
Is T = 0. Hence the Thecrem.

Theorem 11: Let A(x) be a complex wreducible orthogonal
representation of a finite group G, then by (Morris, 1968)
A(x) is equivalent to a real orthogonal representation.
The proof will be given in steps as follows:

Step 1: Let
C=Y B(b)B'(b)

heG

And
D=BC
Then P is real positive number and D is both

Hermitian and orthogonal. That s from Eq. (7), C 1s
Hermitian invariant and we have that

B()CB! (x)=C (11
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On taking the complex conjugate of (6), we obtain that

B(x)B'(x)=B'(x)B(x)=1 (12)

Hence Eq. 11 can be written as

B(x) C = C B(x) (13)

Transposing this equation we have,
C'B(x)= B ()"
Or equivalently, by (6)and (12)

B(x)C=CB(x) (14)

Using (13) and (14) we find that
BE)(CC' = (BXXC)C = OB (x)C)=(CCHB(x)

By corollary to Schur’s Lemma 1t follows that

cc' =p, (15)

Where P is a number. We need to show that j is real
and positive. From (15) we have that

CC'C=pC
Hence if u is an arbitrary non-zero vector, we obtain that

(uC)C (Cu)=PruCu’) (16)

Now let v =uC
Then ((16) becomes

(vC'v=PB(uCu’)

And it is now obvious that § >0, because both C and
C' are positive definite and v+0. From H =p K, we may
replace C by the Hermitian invariant D given by

-1

17
D=BC a7

We have that
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D' and uDuy! =0 u#0.

B(x)DB(x)=D forxe G
And by substituting (17) into (15), we have that
D'D=1=DD'
And we have that D 1s both Hermitian and orthogonal.
Step 2: Let E(x) be define by
Ex)=(I+DYB{x)=(1+ D) !

Where D, T and B are as above, then E(x) is real. Since

D is positive definite, so is I+D'. Hence I+D' is invertible
and thus E(x) as defined above is equivalent to B(x).
Taking comugates of E(x) and noting that D' =D we find
that

Ec)=(I+DIBG=(1+D) '

and
B(x)=D'B(x)D=D'B(x)D'y"

Substituting, we have

E(x)=(I+DID'B(x){(I+ DID'Y '=(D'+ DB(x)
(D'+1) '=E(x)

Since D'D =1 =DD"' and E(x) is real.

So far, we establishes that E(x) is real and equivalent
to B(x). But E(x) is not orthogonal. However this last step
establishes that it is in fact equivalent to a real
representation.

Step 3: sLet E(x) be as above. Then there exists a
representation P(x) which is equivalent to B(x). We want to
show that there exists an invertible matrix T such that

Px)=T'Ex)T
Let

Q = (DYDY (18)
Then

E)QE'(x) = Q (19)
Now using D =D and DD =1 = DD, we have that

Q=2HD+D = 2I+D+ D
This shows that Q@ 1s real, symmetric and positive

definite because I, D and [ are positive definite.
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Hence by Lemma 6 there exists and invertible matrix T
such that
Q=TT
and
ExIQE'(x) =Q
becomes
{T' ECOTHT'E(x)TY =1

Thus from P(x) =T E(x) T,

The representation E(x) is equivalent to B(x). So E(x)
and B(x) are both equivalent to a real and orthogonal
representation. This completes the proof of Theorem 11.
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