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Abstract: In this study, we studied the Susceptible-Exposed-Infectious-Aids, (SEIA) Epidemic model for vertical
transmission of HIV/AIDS, along the line of Michael et af. assumptions with other additional considerations
and employed the Routh-Hurwitz stability conditions and the threshold parameter, to examine the equilibrium
states, (disease-freeequilibrium, DFE and the endemic equilibrium, EE states,). The threshold conditions for the
stability of the disease-fee equilibrium and endemic equilibrium states are obtained and the Biological

mterpretations are also provided.
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INTRODUCTION

The term vertical transmission of Human
Immunodeficiency Virus and Acquired Immunodeficiency
Syndrome (HIV/AIDS), is described as Mother to
Child Transmission, (MTCT), (Olowofeso, 2003,
Mugisha et al., 2003). This means transmission of
HIV/AIDS from mfected mothers to their unbom or
newly bom babies, (Mugisha et af,, 2003). The Human
Immunodeficiency Virus (HIV) infection in children is
generally more serious then in adult due to faster disease
complications and progression. However, there are
three major mechanism of vertical transmission of HIV,
(Rachel Waema and Olowofeso, 2005). These are,
infection through the placenta, known as in utero
mfection; infection during birth known as ntra-partum
mfection and mfection through breast-feeding, known as
post-partum. The concentration of infective HIV
(high viral load) in the blood and genital secretions of HIV
mfected pregnant women appear to be the factor best
associated with the risk of vertical transmission and this
appears to be highest during labour and delivering.
Approximately 25-38% of vertical transmission occurs
m utero, ( Mugisha et al., 2003) and at least 50% of
HIV mfected chuldren have been infected either peri-or
post natally by infected mothers milk as observed by
Mugisha et al (2003). The major risk of infection
through breast-feeding appears 1 the period early
after birth, between 1 and 2 years, third of breast-fed
children of HIV-infected mothers get infected

(Mugisha et af, 2003). Vertical transmission of
HIV/AIDS has been the principal cause of 80-90% of
HIV-infected children (Mugisha et al., 2003), however
there is no doubt that the treatment of pregnant women
with their children with antiretroviral recombinants has
reduced the transmission to some low levels in most
developed countries, (Mugisha et al, 2003), This
reduction has not been significant in Africa, Asia and
Latin America; perhaps this may be due to less access to
and no systematic use of drugs, which may be due
poverty and
developing countries. These problems couple with lack of

corruption of most government of

discovery of possible vaccine continues to put the
population at risk.

Some early published research articles that studied
vertical transmission of epidemic diseases mcludes the
works of Michael et al. and that of Pugliese ef al. While
Michael et al. studied the spread of the virus in a
constant population, using both horizontal and vertical
transmission, with incidence term that of bilinear
mass-action, death and birth rates assumed, the same and
also non disease mortality. He developed a SETR model
using these assumptions.

Pugliese ef al. studied vertical transmission of the
virus in a varying population, with density depended
mortality and a disease induced mortality, not density
depended. In this research, we would adopt Michael et al.
defimition with modifications consistent with HIV and
AIDS transmission.
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THE MODEL

Assume that the population is homogeneous random
mixing and partitioned into compartments of densities, as
susceptible 3(t), Exposed, (infective without symptoms)
E(t), infectives, (can infect others) I(t) and AIDS, (those
that have progressed from HIV to ATDS). Suppose the
natural birth and death rates are assumed to be 1dentical
and denoted by p and that HTV-infectious who developed
full-blown AIDS are easily identifiable and are no longer
sexually active as such, they don’t contribute to human
reproduction process. They are quarantine from infecting
others. Suppose a fraction p and a fraction ¢ of offspring
from the exposed and the mfectious classes, respectively
are born into the exposed class. Then the birth flux into
the exposed class 1s given by pAE+gAI and the birth flux
into the susceptible class is given by-pAE- gAl in line
with Michael et al), where. O<p<1 and O2q>1.

The dynamics of transmission of HIV and ATDS can
be described by the transfer diagram: Fig. 1.

Equation of the model: Applying the assumptions and the
inter-relations between the variables and parameters as
described in the above compartmental model, the density
dynamics of HIV are described by the following
equations:

S=A-BE _pAE-qAI-pS
N

IS

E:B§+PAE+qAI—(m+M)E

[=mE - (k+wI

A= =Kl-(utDA

Where N = S+ E+ 1+ A, 1s the total population size
and A is a function of the total population size entering
the susceptible class and the birth rate, i same as the
death rate.

l a-paE-qal

(WA

Fig. 1: Dynamics of transmission of HTV and ATDS

ANALYSIS OF THE MODEL

1/m is the mean latent period. When m approaches
wnfimity the latent period 1s negligible and the model
reduces to a SIA epidemic with bilinear incidence and no
vertical transmission. When k = 0 then susceptible simply
develop HIV and does not become ATD patients and the
model reduces to an SEI model. We would be considering
the two models. One for progression of HIV to ATDS, with
above assumptions and the other with progression from
latency to HIV-infection. We would also examine the
stability of the disease-free equilibrium state E; and the
endemic equilibrium state E;, using the Routh-Hurwitz
stability conditions and the basic reproductive number,
Ry. The disease-free equilibrium state is obtained as
By = (é: 0.0.0) and the Jacobian at the disease-free

B

equilibrium 1s given by,

-b, -pA -q A 0

. 0 pA-(m+ p) BC+qA 0

Eo 0 m -k + ) 0
0 0 0 -(lL+71)

The characteristics equation associated with this
matrix 18 also obtained as,

aght + aA® +a At +agh+a, =0,
where a; = m+k+r1+4upA

ay = M + Dk + P[pA + (m+ w)]
+ (2p+ r)(m + k + 2p-pA)-mB + qA)

a; = k+wWEu+0pA+(m+p)]+
(m+k+ 2u - pAuiu+ 1y —m{2u+ )P+ qi)

ay = [pA+ (m+ )k + ) —m(B +gA)

For the stability of the disease free equilibrium state,
the coefficient of the characteristics equation must satisfy
thefollowingconditions,

a >0, a;>0, a,;>q ala2a3>a32+alza4=
A—(m+k+r
a1>0:p.<%

If ay; = u(p+ )k + WpA + (m+ pl,
Ay = (ZU+T)m+k+2u—pA ), a,; =mP+ga)
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a3y = (k+ p)Zp+ 0[pA+ (m+ p),
azy = (m+k+2Zu—pAu(p +1)

a3z = mZu+1)(B+ gA),
ag) = pA+ (m+uik+u). ayy =m{P+qa)
Tt is obvious that
23170, 85,>0, a31>0, a3, >0, 2330, 84,20, a,, >0

Then
ay(ag1 gy Tay3 )@z tagy tags ag tagy) = ajazaz >0

Where

8y = (aytay Tayg), ag = {ag tag tagg ). ay = (g tay,)
Also, since a, >0, we would 332 i a12a4 .. have,

2 2
aagay —(a3” +a;7ay) = ar(@yy + agyy + agg )ag +az;

+agz)ag +ag)—[(ag +ag + a33)2 + a12 (g +a45)]

(837 + 8z + 833
{847 +aygz)

(az) + a3, +ag3)

ar(ag; +aq)

_ 2
=ay(ay; +ayy +ay3)— +a;” >0,

if (g +ay, +ax3)+a; >

Substitution gives,

wp+ ik + ppA+ (m+ p) + (Zu+r1)
(m+2u—-pA)+m(B-qA)+m+ k+r1+ du— pA =

(k+0(Zu+)[pA+ (m+ W]+ (m+ k+ Zp— pA)
M+ 0+ mZp+ (B + gA)
(m+k+r1r+ 4p— pAIpA+ (m+ )k + )+ m(B + gA)

This 1s condition holds for these positive values of
the model parameters.
Also,

ay =0 if (k+ w[pA + (m + b)]>m(p + gA)

e, po & RIPA T (m]-mgA
m

Where P 1s the transmission rate of the HIV-infection.
It also follows that the condition, a,a,a;>a,’+a, a,, holds
for positive values of the model parameters. Thus the
disease-free equilibrium state is locally asymptotically
stable and the nfection will die out.

Existence and stability of endemic equilibrium state: The
endemic equilibrium state 1s obtained as,

EI:(Af(HH_M)E, A—MS’ mE : kmE )
u m+p k+p (u+ntk+p)
Where 8% = A-UFM g ga o AHS
u m+p
* - mE . kmE
K+ (m+ ik + W)

S*, BE*, I* and A* are fraction of the population that are
susceptible, exposed, with HIV-infection and has
progressed to ATDS respectively. However, E* exists if

A=uS or if S<é_ Meammng that for E* exists, if the
B

number of susceptibles recruited per unit of time 1s greater

than the product of number of susceptibles and the

recruttment rate. Also the fraction of the population

susceptibles depends on whether, A - 1where is
m+ L

1
m+ L

the average length of the infection. Thus the

endemic equilibrium state exists if these conditions hold.
The Jacobian at the endemic state 1s obtained as,

I *
fBE —b, -pA -qA 0
I* 5%
Jg, = BE PA-(m + L) BEH]A 0
0 m -(k+p) 0
0 0 k -(L+71)

Using thus approach may render the computations
inconclusive. However Heffernan et al (2003),
Castillo-Chavez et af and Mugisha et al. (2005), described
the use of the basic reproductive number of infection in
analyzing the stability of the endemic equilibrium state.
According to their work, when, Ry >0 the system has a
unique endemic equilibrium state that is globally
asymptotically stable. However whether the virus
becomes persistent or dies out depends on the magnitude
of the basic reproductive number, Ry as observed by
Mugisha et al. (2005). According to him, the diseases-free
equilibrium point is locally asymptotically stable Ry <1
if and unstable if Ry >1. Adopting this approach m this
section, using the next generation operator developed by
Heffernan et al. (2005), we get the following results.
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LetX=(8), Y =(E), 7 =(1)and the disease-free state
is Eg = (310’010) . Then we derived the following systems
n

of equations m line with Heffernan ef al. (2005).

g (X, Y, Z) = 0is assumed to implicitly determined the
function, Y =g(X*,Y) as in Mugisha et ol. (2005) and
Castillo-Chavez et al. Thus we get

_+PA)

hOLY.Z) = me B G W2,

hy(X,Y.2) = m—Pr Py
(m+u—pA)

Letting H = M-D with m
matrix, we get,

=

0 and D=0, a diagonal

M= BPBEPA) g Do ek
(m+p— pA)
The basic reproductive mumber 1s defmed as the

spectral radius (dominant eigenvalue) of the matrix \jp-1
(Heffernan er al, 2005), R, = p(MD™) is given by

_ m{B+PA)

O (mtp-pAYpt k)
where,
{m+ p—pA)

15 the probability of survival from latency mte HIV

infectious stage and is the effective infectious

(u+k)
period.

If, Rg <1 then DFE is locally asymptotically stable
and the HIV-infection will simply die out. This is the target
of all public heath control measure. It is often directed at
lowering Ry below unity, so that the disease is
eradicated.

A submodel without AIDS, (k= r = 0): The model takes
the form,

: IS
S=A-P——-PAE—qAl-uS
N
. IS
E:B§+PAE+qA17(m+|J.)E
.I:mEfp‘I

The stability of this model is examined at the disease
-free equilibrium state, using the basic reproductive
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number of the infection as in Mugisha et al. (2005) and
Castillo-Chavez et al. The disease-free equilibrium point
1s obtained as.

Eo= (A,O,O)
n
LetX=(8),Y =(E)and Z = (I). Also suppose,

FOX,Y,Z)=A — 5%7 PAY - gAZ — uX

X, Y, Z)= B%-&- PAY + qAZ — (m+ W)Y

hiX,Y,7)=mY — uz

g(X,Y,Z) = 0, mplicitly determined the function.
Y =g(x*,Y) Thus

IN(ERT N
Ty Y
(B+ad)
(m+u-pa)
B+ )

(I + u—pa)

h(X*.Y.Z)=m Z — 7 and

hy (X5, Y.Z)=m

Letting H = M- D, with and D=0 a diagonal matrix, we
get,

Mo DBAd) Dy
(m+ p—pA)

The basic reproductive number is then defined as,

R mB+qh)
0= .
uim -+ p—pA)

Where,
m-+k—pA

15 the probability of survival from

latency into infectious stage, as in the case with
progression to ATDS.

DISCUSSTION
Here we have studied a compartmental model for the

vertical transmission dynamics of HIV/AIDS m a
homogeneous mixing population and also obtained
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expressions in terms of the model parameters as threshold
condition for the stability and existence of disease-free
equilibrium states for two types of models. One with HIV
and ATDS infectious compartments and the other without
AIDS compartment. For the model with HIV and ATDS
compartments, using the Routh-Hurwitz condition we
observed that the disease- free equilibrium state is locally
asymptotically stable if,

g Lo wlpA + (s )] - maA]
m+k-pA m

where pA < (m+k+r1+ 4n) and holds, whenever it exists.
Otherwise there exists an endemic equilibrium state, which
15 locally asymptotically stable.

This means that the transmission rate must be as
small as possible, so as to obtain stability of the disease
—free state. However using the basic reproductive
number we observed that the disease-free equilibrium
state 1s locally asymptotically stable whenever it exists, if

M<%(pA—(m+ k+1)

B mip+ PA)
* (m+ w2

For the submodel without AIDS, we see that the
disease-free equilibrium state is locally asymptotically

stable, provided, R, = _mB+gh) =1, otherwise there
uim + p— pA)
15 an endemic equilibrium which 1s globally asymptotically
stable.
Thus n both models, reducing the transmission rate,
may eradicate HIV and AIDS m a population with
constant recruitment of susceptibles.

VARIABLES AND PARAMETERS

S(t)
E(t)

The mumber of susceptible ndividuals at time t.
The mumber of exposed/Latently mfected
individual at time t.
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T(t) The number of infectious individual at time t.
A(t) : The number of Aids infected individual at time t.
Tl . The per capital natural mortality rate.

m Rate of progression from latency to HIV.

k Rate of progression from HIV to AIDS.

T ATDS induced mortality rate.

B The rate of transmission of HIV virus.

A : Number of new susceptible recruited per unit of

time.
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