MedWe]l Research Journal of Applied Sciences 2 (4): 362-366, 2007

Onllne

© Medwell Journals, 2007

Advanced Control Algorithm for a Chemical Polvmerization Process

V. Balaji, *E. Vimala and "M.E.N. Vasudevan
'Sathyabama Deemed University, Chennai, India
*Dhanalakshmi College of Engineering, Chennai, India
’St Peters Engineering College, College Road, Avadi, Chennai-54, India

Abstract: This study deals with the study of sunulated implementation of non-linear control algerithm for
temperature stabilization of a CSTR reactor to maintain favorable ethylene conversion and butenel yield
conditions. The simulation results revealed the capability of all the proposed control algorithms to stabilize
such a reactor with some differences in their performance.
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INTRODUCTION

FLC is a nonlinear controller and can adapt itself to
changing situations; it can outperform conventional PI
controllers for unstable dynamics and nenlinear systems.
In contrast to model-based controllers, FLC 1s known as
a knowledge-based controller that does not require a
mathematical model of the process at any stage of the
controller design and mmplementation. In many cases, the
phenomenological model of the control process may not
exist or may be too expensive in terms of computer
processing power and memory and a system based on
rules of human knowledge may be more effective.

Reactor model: The dimerization reactor (Assala ef al.,
1997) considered in this study is assumed to be a liquid
phase perfectly mixed reactor. Schematic of the process
15 depicted m Fig. 1. The liqud is homogenized by a
high re-circulation rate around the reactor through a
heat exchange used to remove the high exothermic
heat of reaction. The model uses the Homo and
Co-polymerization mechanisms suggested by Gauthier
(Assala et al., 1997).

Based on the above assumptions and the assumed
kinetics, the resulted dynamic model
(Alhumaizi, 2000) of the dimerization process 1s as follows:
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Fig 1: Schematic of the dimerization reaction process
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The dynamic of the outlet temperature of the coolant
fluid 1s not mecluded and alternatively it s obtained by
solving the steady-state equation:

WCp,(T,~T.)+U,A (T, ~T.) @)
In this case, W (Coolant flow rate) and F (Gases feed
flow rate) are used as forcing inputs. The kinetic
parameters are used in this study are based on the rate
constants. The original model of the dimerization process
contains two additional states. The two states, which
represent the hexane and octane concentrations, are not
mecluded 1n this paper for simplicity. This assumption 1s
valid since the above eight states are independent of the
omitted ones.

Open-loop analysis: Our previous open-loop bifurcation
analysis, revealed the existence of a trade-off between
conversion and selectivity (yield), which is clear in Fig 2.
It can be seen that as the feed flow rate F mcreases, the
conversion increases while the yield decreases and vise
verse. For this reason it is recommended to operate the
plant around a favorable operating point that corresponds
to F 4x10-3 m’s, which corresponds to 95.7%
conversion and 69.6% yield. This point also corresonds
to a practical temperature operation, which has to be
around the heavy mixture bubble point of 67°C.
Nevertheless, as the open-loop response shown m Fig. 3
indicates, the desired operating point i1s unstable. The
stable regions for this process are economically
unacceptable. For example, as shown in Fig. 2 a stable
region exists at lngh throughput. Another stable region 1s
located at very low F, which corresponds to a high
selectivity but low conversion and production rate. This
region is not shown in the Fig. 3. Therefore, there is a
potential for utilizing a good control design to stabilize the
reactor around the desired open-loop unstable point.

Control objective: The main control objective of such a
process 1s the stabilization (Assala et al., 1997) of the
reactor temperature. This 15 essential to secure safe plant
operation and to deliver a good quality product. Tt is also
desirable to maintain optimal operation of high ethylene
conversion and desired butene-1 yield m the face of plant
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Fig. 3: Open loop simulation of the reactor temperature
for two values of T,

upsets. In practice, the coolant feed temperature, Tc, 1s
one possible source of disturbances to the process, which
may cause thermal runaway due to temperature instability
and consequently loss of conversion and/or yield. The
upset in Tc 18 chosen for demoenstration purposes and 1s
considered to simulate an unknown unmeasured
disturbance that creates a temperature excursion situation.
For this reason, the closed-loop simulations m this paper
focus on temperature stabilization and maintaining desired
yield in the face of upsets in Tc. In this case, the
controlled variable would be the reactor Temperature, (T)
and the butene concentration at the outlet stream, (C4). In
due course, the suitable Manipulated Variables (MV) are
the coolant flow rate, W and the feed flow rate F. Single-
Input Single-Output (SISQ), Multi-Input Single Qutput
(MISO) and MIMO control schemes will be examined for
this control problem. For the SISO case, the controlled
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variable is the reactor temperature and the manipulated
variable is the coolant flow rate. The MIMO scheme is
carried out in a decentralized form where T 13 regulated via
W and C4 via F. The selection of these particular
manipulated variables includes detailed analysis for
designing the control structure of the dimerization reactor.
In the simulation sectior, a sampling rate of 0.1 h will be
used, which 1s more realistic for practical applications.

Fuzzy logic control algorithm: The basic FL.C loop
(Alvarez, 1996) 1s shown inFig. 4. It consists of 3 major
sequential steps, namely Fuzzification, Inference engine
and Defuzzification. In the following subsections, the
development and design of each step is discussed in
detail. Hereafter, by mput we mean controller mput, 1.e.,
error and/or error velocity signal and by output we mean
the controller output, i.e., manipulated variable.

Fuzzification: The mput signal of the controller, which 1s
a real-value variable also known as crisp value, 1s fed to
the fuzzifier. In the fuzzifier, the crisp value is converted as
a member of a finite number of fuzzy sets. Therefore, the
process of fuzafication 18 simply mapping, 1.e., checking
the value of the input signal (member) against each fuzzy
set to determine its degree of membership. The fuzzy set
is usually represented as a membership function as shown
m Fig. 5 The membership function can have any
symmetrical geometric shape and 13 graded between
O and 1. The fuzzy sets in Fig. 5 are identified by linguistic
variables such as Large Positive (LP), Small Positive (SP),
Zero (ZE), Small Negative (SN), Large Negative (LN) and
they are labeled as 1, 2, 3, 4 and p5, respectively. Usually,
finite number of overlapping membership functions
(fuzzy sets) (Bemard, 1988) can be used to span the
possible range of the process variable. The overall span
1s known as the universe of discourse.

Commeon difficulties exist in this step. The selection
of the shape and number of the membership functions, the
location of their center. Moreover, the common FLC
design mvolves at least three different groups of fuzzy
sets, each of which corresponds, to a different process
variable. For example one group is used for the error
signal, e, another for the velocity of error signal, ¢ and
another for the controller’s output (manipulated variable),
u. The latter is used in the defuzzification step. In this
paper we try to overcome the above problems. First we
use only one group of fuzzy sets for all the three process
variables. To achieve this, the umverse of discourse 1s
unified so that it spans the interval [-1, +1]. In this case,
the value of each process variable should be scaled
properly to fit the specific mterval. Secondly, Gaussian
and sigmoidal shapes are considered for the membership
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Fig. 5: Gaussian fuzzy set used in this study

functions. Gaussian shape 1s selected because 1t 15 a
continuous function and can be easily expressed by an
analytical formula. Continuity of the Gaussian functions
produces output.  Usually
symmetrically span the mput domain, odd number of fuzzy
sets should be designed. Increasing the numbers of the
fuzzy sets creates smoother output. However, this will be
at the expense of increasing the number of control rules
leading to more complicated design procedure and tuning.
Therefore, five such functions are used here as shown mn
Fig. 3, which found, with the aid of Gaussian functions,
sufficient to provide smooth output at reasonable number
of fuzzy rules.

In this research two variables are fuzzified, which are
the error (&) and the error velocity (.e). Therefore, in this
controller phase, the membership degree of a specific
nput value, 1e, e or e, over all fuzzy sets can be
determined directly from Fig. 5.

smoother  control to

Inference engine: Inference engine is the heart of the FL.C
algorithm where the control action 15 formulated. In this
study, we choose to design the rule base according to
desired response of the process because it the most
intuitive for many control practitioners.

At this phase of the controller algorithm, given a
value for the mput signal, the degree of fulfillment of each
rule in the rule base set is determined. The degree of
fulfillment of the rule base is known as the conclusion or
the result of the rule base. The process m wihuch these
conclusions are calculated 1s known as mnference. Due to
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overlapping membership functions, some of the rule
conclusions may have a zero value and some a non-zero
value.

Membership function for the output with a non-zero
degree of fulfillment is considered fired. Tn standard FL.C
algorithms, the fired functions are clipped or scaled and
then copied to a temporary template. All fired sets are
then combined using superimposing technique. The
combined set is known as the inferred controller output.
Figure 6 shows an example of three combined active
fuzzy sets.

Defuzzification: In this step, the combined output fuzzy
sets are then converted into a single crisp value. The
calculated crisp value is the numerical value for the
manipulated variable. In standard FL.C applications, the
combined set is a new geometric shape; say pout (Fig. 6).
Hence, finding a weighted average is similar to
determining the geometric center. One way is by
calculating the center of area. The discretized form of
COA can be written as:

Ly fr
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A
(10)

Where nf is the number of output membership functions
and equals 5 in this study, nR is the number of rules and
equals 25 in this study, which is the maximum possible
number to cover all eventualities created by the 5 output
membership functions. 8i is value for the location of the
center of ui. The value of &i is pre-calculated and fixed as
shown inFig. 5. A is nR x nf pre-caleulated matrix, which
1dentifies which membership function is included in each
rule. For example, row 1 of matrix A, which is assigned for
Rule 1, contains 1 at the first column and zeros elsewhere.
The same logic is carried out over the remaining rows.

Tt should be emphasized that the control output, u
computed by Eq. 10 is taken in the velocity form. Velocity
form is more suitable for non-linear systems. In non-linear
systems, the new equilibrium value for u, denoted as uss,
that brings the output to the desired steady state value
may not be known beforehand. Thus, it is difficult to
locate uss in the universe of discourse as the center for
the ZE membership function. However, when u is used,
zero value will always be the equilibrium point around
which ZE can be built.

Tuning method: Tuning a fuzzy linguistic controller to
changing process and environment dynamics can be
accomplished in several different ways:

Adjusting the membership functions.
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Changing the finite set of values describing the
universe of discourse.

Reformulating the finite set of control rules in the
knowledge base (inference engine).

However, these procedures are cumbersome. In
addition, there are no clear guidelines on how these
procedures affect the closed-loop response. In this paper,
we adopt a simpler method. The scaling factors for the
input and output signals are used as the tuning
parameters. As will be seen in the examples, these factors
have direct and clear effect on the closed-loop response.
These factors are used to scale the process variables so
that they fit the universe of discourse domain used in
Fig. 5. Specifically, the scaling factors for the error, error
velocity and output velocity are se = a/sp, sde = b/sp and
sdu = c.um, respectively. For servo control problems, sp
is the difference between the set point and the initial
steady state value for the controlled variable. For
regulatory control problem, pis the set point value um
is the difference between the maximum and minimum
allowable values for the manipulated variable. Therefore,
a, b and ¢ are the tuning parameters. Changing the value
of a, b, or ¢ is equivalent to stretching or expanding the
universe of discourse of the fuzzy sets shown in Fig. 5.
Conceptually, this is similar to the first two tuning
guidelines mentioned above.

FLC algorithm: The following steps explain the FL.C
control (Bernard, 1988) algorithm used in this study.
Seta=b=c=1. Atany sampling time, k do:

Step 1: Scale the error and the error velocity signals
(e (k), e (k)) via multiplying them with se and sde.
Step 2: Compute the degree of membership of e(k) and

e(k) to the five membership functions shown mn
Fig. 5.

Step 3: Calculate the conclusions of the Rule base.

Step 4: Calculate the control action using equation 10.
Scale the computed value by multiplying with
sdu.

Step 5: Implement the control action, set k=k+1 and go

back to step 1.
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If the control performance is poor, adjust the value of
a, b, or c. We have found that mcreasing the value of a
increases the speed of response and eliminates offset.
Increasing the value of ¢ penalizes the manipulated
variable moves, thus introduces stabilizing effect.

Closed-loop simulations fuzzy logic controller: The
above SISO, MISO and MIMO control problems are
re-tested using the FL.C algorithm (Garrido et al., 1997).
Regarding the SISO case, Fig. 7 demonstrates the closed
loop response to two step changes in Te of +4 and +6°C,
respectively. For both cases, a=1,b=10and ¢ = 105 are
used. As the figure illustrates, a perfect disturbance
rejection without offset 1s obtained for the first case,
ie, Te = +4°C. For the larger disturbance case, i.e.,
Tc = +6 °C, poor performance, which seems worse than
that for the PI algorithm, 1s obtamed. The poor
temperature control is associated with a loss in the yield,
which is not shown in Fig. 7 for simplicity. The SISO FL.C
performance can be made less aggressive through tumng.
However, the closed-loop response will eventually
oscillate due to input saturation. The SISO PT response
also oscillates 1f aggressive values for the tumng
parameters are used or if longer simulation time is used.
Anyhow, further improvement in the FL.C performance is
not possible in this case because the loss m performance
is due to input constraints.

Building upon the poor performance faced in the
SISO case at large upset m the inlet cooler temperature, a
MIMO FLC scheme i1s examined. In this case, a
decentralized control system similar to that used in the PT
algorithm 1s also used here. The result of the closed loop
response is shown in Fig. 7 by the solid lines.

For the first loop, a=1, b= 100 and ¢ = 105 are used,
while a = 1, b = 3xsecond loop. Tuning is found to be a
cumbersome task due to the strong cross interaction.
Nevertheless, the obtained closed loop response is
reasonable as perfect control of T and minor offset 1 C4
(-67 mole m~”) are observed. Small reduction in the feed
flow rate was necessary to reduce offset in the yield, but
was not good enough. Further tuming was found not
helpful. The FL.C tuning parameters are the same as in the
MIMO case except that ¢ for the second loop is re-
adjusted to 1x10-4. The only reported advantage of the
FLC is that its resulted performance for the MISO case
outperforms that obtained by the PI algorithm. However,
the MISO FLC 1s superior to the MIMO FLC in the sense
of less offset in the yield response. This situation is
attributed to the strong cross-lop interaction. In the
MIMO case, tumng the second control loop to reduce
offset in the yield would require less fresh feed flow.
Alteration of the fresh feed flow introduces disturbance
to the first control loop leading to temperature runaway
and consequently unstable process behavior. Moreover,
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Fig. 7: Closed loop rsponse to step changes in T, using
SISO FLC algorithm (a,b): At, +4°C, (¢, d):
At =+6°C

it is found that tuning the FL.C parameters for the MIMO
case is as difficult as that for the MIMO PT algorithm.

CONCLUSION

Our previous closed loop analysis using a first-
principle model for the ethylene to butene-1 dimerization
reactor revealed the necessity for a better control design.
For this purpose nonlinear control strategies such as
fuzzy logic, was tested for possible stabilization of such
a reactor. Application of SISO FLC algorithms revealed
the ability to stabilize the reactor at a low upset m the
coolant temperature. At high upsets, saturation of the
coolant flow rate occurs degrading the controller
performance. This founding is in agreement with that
obtained previously. The limitation of the SISO scheme is
not related to the control algorithm neither to controller
tumng, but rather to the controllability of the process.
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