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Age-Structured Epidemic Model for Transmission Dynamics of Tuberculosis
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Abstract: We proposed an age structured transmission dynamics model for the transmission of Tuberculosis,
along the line of the classical Mckendrick-Foerster, age-structured population models based on some
assumptions contrary to the Castillo-Chavez assumptions of age depended mortality rate and age depended
contact rate, vaccination and treatment rates of the mfected. Rather, our model assumes constant contact rate,
no vaccination and treatment, infectives are removed and quarantine till non- disease induced death. We then
examined the existence of non trivial steady states of the model and discussed their stability via the basic
reproductive number of the disease. Also the equations for the population compartments are obtained.
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INTRODUCTION

Research on Tuberculosis transmission dynamics 18
currently intensified, aimed at providing preventive,
management and control strategies for victims and non-
victims of the diseases. Some of these research focuses
on structured population along the line of the classical
Mckendrick-Foerster structured population model as in
the work of Castillo-Chavez (2004), Inaba (1990),
Mats (2002) and non structured homogeneous population
model, as in work of Castillo-Chavez (2004). However
there have been several representations of the vital
dynamics for the age structured model, which are
extension of the classical Mckendrick-Foerster age
structured population model as in the work of Gurtin and
MecCamy, (Cushing, 1994), Michel Langlais (1991), Mat
(2002). However in this research, we examined the
transmission dynamic of Tuberculosis, in a proportionate
mixing population , constant aver rage per capital contact
rate and that the disease affect the mortality and
reproductive rates of the removed individuals.

THE MODEL EQUATION

The following parameters are defined as,

S(t,a) : Population density of the susceptibles of age
a,attimet.

T(t,a) : Population density of the infected individuals
of age a, at time t.

R (t,a) : Population density of the removed mdividuals
of age a, at time t.

B(a) : Fertility rate at age a.

1 (a) : Natural mortality rate at age a.

P . Removal/progression  rate  to  active
Tuberculosis.

¢ : Average ( per capital contact rate )
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Consider an SIR epidemic model; where there 1s a
constant recruitment into the population and natural
mortality rate not age depended, the force of infection is
of mass action, or proportionate mixing. Assume that the
disease 1s not vertically transmitted to the new born by
infected meothers and that, removed individuals are no
longer sexually active since they are in their active stage
of Tuberculosis and don’t contribute to reproductive
process. Assume that the disease transmission occur
according to the

Sta)Blax)y

proportionate mixing assumption,

1) k(t,a)da, where kia,a) = k(t,a,a) =k(t,a>
n(t,a)
is the interaction coefficient, defined as the rate at which
an average susceptible individual with age a, has contact
with an individual of age at time t, defined m line with

Inaba (1990) and Castillo-Chavez (2004), as

T L
IU n{ta)da

B (a), is the age specific (average) probability of becoming
infected through contacts with infectious individual, ¢ is
the specific per capital contact/activity rate. The force of
infection is.

I(t,a)
n(t,a)

B(a)oj;" k(t.a)a

All newborn babies from both compartments,
(susceptibles and infectives) per unit of time, are
susceptibles and obtained by,

S (L0)=Npu
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T(t,0)=R(t,0)=0

Where 1 1s the natural mortality rate.

Using these assumptions and defimtions we have the
Mckendrick-Von Foerster type age-structured epidemics
model for the population compartments of the heath
states, as,

8,(:a) +8,(t.a) = -uS(t.a) - Bla)en(DS(t,a)

I(t,a)+ 1, (t,a) = —ul(t,a)+ Ba)en(t)St,a) —yi(t,a) 5 (1)
R, (t,a)+ R, (t,a) = —uR(t,a) + It a)

With the initial conditions, S(0, a) = S, (a), I (0, a) = [(a)
Ry(a) and boundary condition, S (t, 0) = Nu, T (t, 0)=
R{t,0O=0n{ta)=n{ta)=S(,a)+I(a)+R( a),

Where

nw ="

a). - - 1sth bability fi
k(t’ﬁ)l(t,a)da 18 the probability for
n(t.a)

a susceptible to become infected by contact with an
infected individual. Let us assume that the population is
in an equilibrium state, so that its size and age-
distribution are independent of time. This 1s only possible

if R, :I:B(a)P(a)da =1. Where, Pla)=e¢ ™ P (a) 1s the
probability that an average individual survive up to age

a, simply called the survival function. The equilibrium

age demsity is  obtained as, pia)= NP(a) — L*NP(a) -

(Tnaba, 1990), where N is the
size andy, = ["P(a)da 1 is the life expectancy. The
"

stationary population

Crude death rate p*, satisfies w* [PP(ayda =1- (Horst and

Inaba, 1990).
Adding up the three equations gives the
Mckendrick-, Foerster age-structured population model,

n(ta) o, (ta) = -p(an(ta)
n(o,a) =n,(a)
n{t.0)=Nu
Thus, the steady demographic state of the Eq. in 2 is
obtained as,
n(a)=Nue™ = S(a), I{a)=R(a)=0
Under sunilar assumptions, but with treatment of the

infectives and a constant average (per capital contact
rate), Castillo-Chavez (2004) obtained the probability that
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an individual of age & + t, who was infected with
Tuberculosis T units of ime ago and still in class 1, as

T J:qe“*‘“)e*”“)(“‘)cm —oite ™ -

where, L(e*\ﬂ —e™)
r—=wy
r 18 the treatment rate for the infected and Wis the
progression rate to active Tuberculosis. Extend ding
Castillo-Chavez (2004), definition to this problem, we

have, wL,8)= L“Iﬁ%mmeﬂ(m dn=e{te "

where (1) = (1-e™¥"). The infectivity functionA (T, g, 1)
is obtained as, A (T, , d), — Bla)op(8+ 1) 1(T.8)

n(d+1)
(Castillo-Chavez, 2004) and reduced to the form, A (T, «,
9) = f(a) g (t, d) using proportionate mixing assumption,
{Castillo- Chavez, 2004), Where, f (a) =p (a)c, g(t, 9)

— p+ 0L p(a)= )

n(d+1) [Fn(a)da

The basic reproductive number is then defined in
terms of this parameter as, R, = 5[ A(T g, 8)5(e)drdd -
(Castillo-Chavez, 2004; Diekmann et, af., 1993).

EXISTENCE OF NON TRIVIAL STEADY STATES
Let s*(a), T* (a) and n* be the steady demographic

states, (the state where infection 1s absent) then, the
following equations holds,

d *
" s Plaetan s G a0
$*(0) = Nu
di*(a) - - -
o @i* (@) -l s (@) -it@)  a>0
i*(0)=0
M= Jo ka)i*(a)da
Solving these equations leads to the steady states,
s*(a) =Nue **
1*(a)=n*H(a)[;B(r)c(r)F(r)dr
F B *J';ﬁ(r)c(r)dr B . ‘J'D“\y(r)dr
(a)=e JHia)y=P(a)F(a)=¢ "fe
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If m* = 0, then the steady Demographic state or the
disease —free steady state is obtained, while p* = ¢ , gives
the endemic states, (s*(q), 1*(o)) - Thus the non trivial
steady states exist. The global and local stability of these
states 18 examined via the basic reproductive mumber, as
i (Murray, 1989; EL- Doma, 2004; Herffernan et af., 2005,
Tnaba, 1990). Using the representations in Castillo-Chavaz,
(2004) for the infectivity function A (t, £, 1)), we get the
basic  reproductive  number of the infection

R, =c[" [ B(8)e(t, 8)S(8)dnds -

where and S(a) = Nue™ , we have,

1
g(1.3) = ﬁv(rﬁ)
uefs [T B@le M1 - Ve Mgrgs where P(8)=e™

Thus . For a stable disease

3

=

-8 Mods

-free state, we must have R; < 1. This is possible whern,
[ ’“"Sda Y+ P@)=e™ or
0

[T BB Madé‘) <= + “ . Let us assume that p< W¢ and

yre

¢ >1, such that, W is negligible to bring it line with the
C

definition of stability of the diseases-free steady state

as in, Muray (1989), Diekmann et «l. (1993). That

15, the disease-free equilibrium state 1s stable if

=["B(EP(S)d5 <1 - We would have greater rate of
0

progression to active Tuberculosis, than death from
natural mortality and higher number of contacts per unit
of time. Otherwise the disease-free steady state is
unstable. Integrating (1) along characteristics lines, we get
the equation for the population density as,

s

o[ p@ncds

S(t,a)=5,(a-t)e ,if ax>t

ou[Bamid
= S(t-a, 0)e [ rome , ifa<t

[{ta) = p@)G(a)l,(a) +of  MamtP@)Gak(a)da,
ifa>t
= e'(“"")alU (a—t)+

o[ Bam(da

C-I.a: Bla)s,(a - t)e ¥

= e ¥R (t—a,0)+

n(tida,

s Bramcda

C'I.it Bla)S(t —a, 0)e W¥=e
nitida,if a<t
Where P{a) =e™, G(a) =e™
Fla) =e", k{a) = S{ta)

CONCLUSION

We have seen that stability of the disease-free
equilibrium depends on the magnitude of the basic
reproductive number of the disease and this holds if,
R, <V H wwhere P, is the progression rate to active

Yo
Tuberculosis and p 1s natural mortality rate assumed equal
for all compartments. Since, we have assumed * .1, we
e
Y Thus, the threshold conditions

[y

have p < cand y, .,

for a stable disease-free steady state is, ¢ > 1 and . M _ W
c

Otherwise we will have an endemic disease state and the
infection will persist in the population.
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