Medwen

Onllne

© Medwell Journals, 2007

Research Journal of Applied Sciences 2 (3): 258-265, 2007

Decision Support Systems for JAVA Infrastructure Analysis and Control

Sundus Noory Shuker
College of Applied Sciences, University of Bahrain, Bahrain

Abstract: Programmers and managers involved in large software projects need insight into the overall structure
of their programs and the relationships between components. This study describes a method of analyzing
programs whereby cross-referential, dependency and other mformation can be abstracted automatically during
compilation to support decision-making. These items of mformation support hbrary admimstration,
configuration management, version control, software reusability and software composition. The analysis is
accomplished by transcribing language grammar rules directly into Prolog as predicates in first-order logic.

Key words: Dision, infrastructure, configration, soft ware reusability, JAVA

INTRODUCTION

A few modern programming languages are designed
to support large software engineering projects in which a
typical project would consist of perhaps several
thousands compilation units. They embody many modern
principles of software engineering such as modular
development, separate compilation, separation of
specifications from bodies, top-down and bottom-up
development through the separation of stub
imnplementations and context-clauses and reusable
software modules. These good features, at the same time,
make the components of software systems difficult to
enumerate and control. In particular greater visibility of
cross-referential and dependency information 1s needed.

Analysis and control of infrastructure of software
systems 1s therefore desirable
programming languages (such as JAVA) have potentially
complex set of dependencies and cross-references that
might be constructed in a particular application compared

as some modern

with previous lugh-level languages (For example, Algol 68
15 a very complex language but it does not support
modules and would not normally have a complex web of
dependencies in a typical application). In addition, these
languages are likely to be used for very large and difficult
programming applications. These applications may have
a large number of modules whose mter-relationships can
be difficult to determine. These modules may be
distributed over many files and documents (especially if
specifications, implementations, or subunits are stored in
separate files). Tn addition, modules written in mixed
languages can be incorporated. These issues become
more complicated when, as 1s essential for many software
projects, versions or program families are supported.

A software systems programimer or manager, we
believe, to have overall visibility of the
mfrastructire of a system and needs to have a clear

needs

258

picture of all the relationships between the various
components of the system. This facility can be provided
automatically by extracting the required information from
the source code and the related software development
phases. A software engineer or manager also needs to be
able establish quickly efficiently the
correspondence between software components and
information from other phases of the life cycle. This
information, therefore, can support and enhance decision
making through the complete life cycle of a product.

The study is concerned with analysis and control as
an aid to understanding program structures and module
dependencies for the purpose of facilitating decision
support mechanisms to manage large-scale programs. The
analysis of software systems (information systems) is
accomplished by transcribing the language grammar rules
of directly into predicates m first-order logic. Although
the techmiques presented m this study are swutable for
analyzing other computer languages, TAVA grammar rules
are used throughout. The programming language JAVA
has been chosen for the following reasons:

to and

Tt is a complex language with a rich selection of
features. For example: Import, specification and
subunit-of dependencies imply multiple, complex
dependencies
files,

TAVA 1s widely used for large complex systems and
embedded applets within Web browsers where
analysis of an application, we believe, 13 essential.
There is a need for suitable automatic program
examination facilities to be used as a basis for
building knowledge-based environments. For
example the PACT project has provided support,
using PCTE interfaces, for C, Lisp and Prolog but not
for JAVA.

among source, object and interface

Res. J. Applied Sci., 2 (3): 258-265, 2007

Before describing the method of analysis developed
some further background on compilation and definite-
clause grammars is provided.

Previous work: Traditionally, program examination has
been accomplished through printed listings or using
One approach suggested by
Weinberg (1971) in his Psychology of Computer

mnteractive devices.
Programming 1s code readmng. Code reading has led to
a mumber of methods such as walkthroughs, design
mspections find
interdependencies. In recent years, several attempts have
been made to describe and analyze programs using
different techmques. One of these techmiques is the
flowchart. Tt is used to design and describe program

Teviews and to module

structure.

Flowcharts are not very helpful and do not enable a
programmer to determine quickly and efficiently the
overall structure of a program nor do they help in
providing a clear picture of module dependency
relationships. Charts can also become out-of-date. Several
attempts have also been made to develop new
conventions for mformation representation. The goals of
these attempts were limited and cannot be used as a basis
for controlling and managing objects of the life cycle of a
software product. For example, Nassi and Shneiderman
(1973) developed a chart that is more understandable and
they alse produced a new diagrammatical notation to
represent the structure of programs. Their technique has
been used by a number of researchers and developers for
program documentation, design and construction.

Frei et al. (1978), Ng (1978) used Nassi-Shneiderman
diagrams as a basis for program development systems for
the language PL/1. Wagner (1979) has developed a
system to produce diagrams for programs written in SPL,
Pascal, FORTRAN, Assembler and Cobol. These diagrams
were mainly concerned with inter-module relationships
rather than internal structure of modules.

Ried (1983) has investigated the representation of the
static structure of a program constructed from several
separately compiled modules. This work was

developed to assist a programmer to establish quickly the
structure of a program written in Ada. Most of the
research of Ried's Technique was written in Ada using the
York Ada workbench compiler. Ried's technique made it
possible to represent a program structure on a screen
using multiple colors.

For detailed analysis of program structures, there are
two commercially available tools. The first oneis the

259

SPARK examiner, which gives a detailed analysis of a
subset of Ada program structures. It uses data flow
diagrams and assisting in maintaimng consistency
between specification and implementation (Jennings and
Carre, 1989).

The second tool 13 MALPAS, advanced software
package for software analysis and verification (MATLPAS,
2005) which gives project managers and software
engineers a unique tool for the comprehensive analysis of
complex software. Because MALPAS analyses source-
code without actually executing it (a process called
static analysis), the tool does not require expensive test-
rigs and is capable of giving 100% path coverage. By
revealing errors simply and quickly, MALPAS leads not
only to more reliable software but to reduce
development and maintenance costs.

The MALPAS tool performs a number of forms of
analysis. These are:

Control flow analysis,

Data flow analysis,

Information flow analysis,

Semantic analysis (symbolic execution) and
Compliance analysis.

Most of the literature on program analysis is aimed at
establishing consistency with specification. Compiler
vendors are in the best positon to produce tools
incorporating many forms of the analysis discussed
above, but they have concentrated their efforts on
producing compilation systems to the exclusion of other
tools.

As has been mentioned above, most of the available
techmques for program analysis are not sufficiently
developed to be used for more general analysis,
abstraction, software configuration management and
software reuse and construction. In addition, these
techniques cannot be used for analyses and deductions
about the software life cycle nor can they enhance the
understanding and consistency of the relevant
information.

Program analysis and control framework: A program can
be defined is a collection of one or more compilation units
submitted to a compiler at one or more compilations.
There are four basic program units i the case of JAVA.
These umts are:

Subprograms
Packages
Tasks
Generics

Res. J. Applied Sci., 2 (3): 258-265, 2007

Each unit may consist of two parts

Specification: Which describes defimtions or
declarations that must be visible to other units,
Body: Which describes the implementation details

that need not be visible to other units.

A package can be defined as a collection of related
classes. A class is used to create either a JAVA
application or Applet. Tt is used to group a set of related
operations; and it 1s used to allow users to create their
own data types. A method, m JAVA, 15 a set of
instructions designed to accomplish a specific task (Malik
and Nair, 2003).

Modern practices in software applications encourage
the decomposition of large software systems into
manageable components that can be compiled separately
and stored in a program library. These components (in
case of the JAVA) can be library units or secondary umts.
A lhibrary umt 1s a subprogram or a package declaration
compiled separately and stored in the program library. A
secondary unit is a subprogram body, a package body, or
a subumit.

Once a library unit has been compiled, it can be made
visible to another compilation unit by means of an import-
clause. Therefore, a compilation unit is a context clause
(which declares its dependencies on other library umits)
followed by a library unit, or a context clause followed by
a secondary unit. In the following section we show how
Definite-Clause Grammars can be adopted to analyze
language structures.

Definite-clause grammars: The fundamental principle of
formal language theory 1s that a language can be
described m terms of how its sentences are constructed.
The definition 1s:

¢ A gentence is a string (a sequence) of symbols -
rules for string

A language 1s a set of sentences - rules for set.

According to the above definition, a grammar for a
language can be defined
as: "A collection of rules for specifying what sequences
of symbols are acceptable as sentences (statements) of
that language."

Computer scientists have adapted the 1deas of formal
language theory to the study of programming
languages, in the form of Context-Free Grammars (CFGs).
In CFGs the basic symbols or words of the language,
which they describe, are identified by terminal and non-
terminal symbols. The terminal symbols are the basic

260

constructs of the language. The non-terminal symbols
describe categories of phrases of the language. A non-
termmal symbol can be factorized into terminal and/or
non-terminal symbols.

Colmerauer (1978), Kowalski (1974) describe a method
to translate the special purpose formalism CFGs into a
general one (Pereira and Warren, 1980) mn the form of first-
order predicate logic. The methed 15 known as Defimte-
Clause Grammar (DCG). According to DCGs, rules of a
grammar describe which strings of symbols are valid
statements of the language.

Parsing a rule of DCGs, using Prolog, 1s accomplished
by transforming it into a theory and trying to prove its
validity by applying logical reasoning. The proof either
fails or succeeds. Pereira and Warren (1980) explain the
efficiency of DCGs compared with CFGs as follows: "If a
CFG is expressed in definite clauses according to the
Colmerauer-Kowalski method and executed as a Prolog
program, the program behaves as an efficient top-down
parser for the language the CFG describes. This fact
becomes particularly significant when coupled with
another discovery--that the technique for translating
CFGs 1nto defimte clauses has a simple generalisation,
resulting i a formalism far more powerful than CFGs, but
equally amenable to execution by Prolog.

To express DCGs as logic clauses, one needs first to
describe CFGs using the following notation:

head --> body

Where head 1s a non-terminal symbol and body 13 a
sequence of one or more items separated by commas. An
item is either a non-terminal or a sequence of terminal
symbols. Prolog expresses non-terminal symbols as atoms
or terms and terminal symbeols as lists. The null-string 15
written as.

The CFGs for the method-claus is expressed in extended
BNF as:

method-clause: = method-specification, method-body;

According to the above notation, method-clause can be
arranged 1 the form:

method clause~ specifier, main, arguments, throws-
clause, body, semicolon.

main ~ [main)].

throws-clause - throws, exception-handler
throws-clause - []

semicolon - ["].

comma ~ [','].

Res. J. Applied Sci., 2 (3): 258-265, 2007

Each rule of a CFG is translated into definite ¢lauses
of logic by associating with each non-terminal symbol a
predicate with two arguments. The arguments of the
predicate represent the input list and the output
(remainder) list. The first three rules in translate into:

Method clause (In, Out) :- specifier (In, Templ),
main (Templ, Temp2),
arguments (Temp2, Temp3),
throws-clause (Temp3, Temp4d),
body (Temp4, Temp5),
semicolon (Temp5, Out).

We can read the first clause as the input list In has a
valid method clause at the front (returming a left over List
of words called Out) if In starts with public (leaving a
temporary list Templ) and Templ starts with specifier
(leaving a temporary list Temp 2) and Temp 2 starts with
main (leaving a temporary list Temp 3) and Temp 3 starts
with argument (leaving the remainder list Temp 4) and so
on.
of extra

This approach provides a number

mechamsms including:

Inclusion of context information
Imposing of conditions and constraints
Building of structure trees

Provision of partial semantics

The context information can be obtained from the
grammar rule by which arguments can be associated with
non-terminal symbols. These arguments are used to carry
information. Tn addition, they can be used to produce
parse trees i which a relationship between elements of a
statement can be established. For example, to retumn
information of the method-clause statement below:

method clause ([Head | Tail])--> public,
unit_simple name(Head), rest names(Tail), semicolon.

an argument is added to the non-terminal symbols and a
list of values is passed from the body of the above rule to
its head. For example, when a list such as:

IN = [mamn, 'Nag_Library',comma, maths _library, comma,
'Complex Numbers', semicolon, eof]

1s used as input to the head:
mainh_clause(Information, IN, OUT).
The following structures are returned:
Information [Nag Library',
'Complex Numbers'].

OUT= [eof].

maths_library,

261

The infrastructure can contain explicit procedure calls
in the body of the rule that are not part of the grammar
itself but that are executed whenever a statement of the
leanguage 1s parsed. Such procedure calls are placed inside
curly brackets to restrict the constituents accepted. A
programmer or manager, for example, may be only
interested in certain compenents of a 'method clause'
statements. In this case, he or she may test for such
components. This can be done by calling the test
requirement from within the
body of the rule as shown below:

methodh clause
unit_simple name (Head),
(Tail), semicolon.

where 'test (Head)' 1s any condition or constramt imposed
on.

([Head | Tail]) --» method,
{ test(Head) }, rest names

The mfrastructure can also be used to build structure
trees automatically from the parsed compilation. This
structure tree can be organized in any suitable form. One
canreturn, for example, the following structure tree when
a subumit 1s parsed:

sub_unit{ subprogram_body('Rosenbrock Function'))
Or can return a structure tree in the form:

parent unit (package body ('Complex Numbers'),
subprogram_body ('Rosenbrock Function').

when the compilation vt 'Complex Numbers', which
has 'Rosenbrock Function' as one of its stubs, 15 parsed.
Tt is also possible to use any grammar rule to build
structure trees. For example, the pragma rule:

pragma--> pragma, identifier, argument list, semicolon.
can be arranged in the following form:

pragma (1) --> pragma, identifier (I), argument list (List),
{assert(pragma(I, List)) }, semicolon.

To insert a fact in the knowledge base connecting the
pragma name and its parameter's names. This piece
of mformation 15 particularly important for the program
library for supporting foreign language bodies.

The infrastructure can incorporate semantics relates
to the meanmng or interpretation of a word, phrase or
sentenice, which often necessitates a knowledge of the
context.

The infrastructure can incorporate this possibility to
infer such semantics from the grammar rules of a
language. Procedure calls can be used within the body of

Res. J. Applied Sci., 2 (3): 258-265, 2007

a rule to relate certain entities to others in order to make
some deductions about the meaning of a statement of a
programming language. The procedure calls are not
considered part of the body of a grammar rule but they are
executed when the associated code is parsed. Consider
for example the generic specification below which is
extracted from

TAVA Reference Marual [ARMS3]:

generic

type ITEM is private;

type VECTOR 1s array (POSITIVE range <) of ITEM;

with function SUM (X, Y: ITEM) return ITEM,
package ON_VECTORS is

function SUM (A, B: VECTOR) return VECTOR,

function SIGMA (A : VECTOR) return ITEM;

LENGTH _ERROR : exception;
end;
The package can be instantiated as follows:

package INT VECTORS is new ON VECTORS
(INTEGER, TABLE, "+");

A partial meaning of the parameters can be deduced by
relating the parameters of the instantiated package
'INT VECTORS' to the meamng of the formal parameters
as:

The package TNT VECTORS' is calling the package
'ON_VECTORS' which mmports three classes:

"ITEM" of type private,

"VECTOR" of type array of ITEM,

"SUM" 1s a function with two parameters of type ITEM
and it returns a value of type ITEM. More descriptions
can also be made to associate with program units through
the use of facts.

Parsing is a process of discovering whether a sequence
of input characters, symbols, items, or tokens constitutes
an executable program 1e it defines which symbols,
strings, or words are valid sentences according to the
grammar rules defining that language. The grammar
generally gives some kind of analysis of the sentence
into a structure which makes its meaning more explicit.
Parsing a compilation needs two main tools:

A lexical analyzer: Which identifies patterns of
characters in an input stream and produces a stream of
words or tokens (i.e. a list of words successors, or
comments). The effect of a program depends only on the
particular sequences of lexical elements that form its
compilation, excluding the comments, if any. the parser
itself: which recogmzes syntactic objects in a list of
words. The input to the parser is some top-level syntactic
object (a compilation) in a tokenized form which is a list of
words constituting a language compilation. The parser
succeeds if it finds a list of words forming the required
syntactic object on the front of the list of words;
otherwise 1t fails.

262

Building structures from a compilation: A compilationis
a collection of one or more compilation units. According
to the JAVA Reference Manual, its grammar rule is written
as:

compilation : = {compilation units}

The above grammar rule may be mterpreted as: A
compilation 1s defined as a collection of one or more
compilation units. The specification of a compilation
grammar rule can be translated inte Prolog code
recursively as follows:
compilation{ X, Y, P, 3, In, Out) :-

compilation_unit{ X1, Y1, P1, S1, In, Temp),
compilation{ X2, Y2, P2, S2, Temp, QOut),
1% to stop backtracking.

Where X, Y, P and S can be expressed as lists n the
forms:

X =[X1|X2],
Y=[Y1|Y2L
P=[P1|P2]and
S=[S1]|s2].

DCGs implement top-down, left-to-right recognisers or
parsers. To stop left recursion, a condition must be
imposed on compilations. A recursion will be stopped
when each of X, Y, P and S becomes empty. In DCGs, a
non-terminal symbol is expressed in terms of smaller non-
terminal symbols. For example, the above compilation is
expressed in terms of compilation units. A compilation
unit is then expressed in terms of smaller non-terminal
symbols as shown below:

compilation unit(X, Y, S, In, Out) :-
context_clause(Y, Iy, Temp),
library unit(X, S, Temp, Out).
compilation unit(X, Y, P, 3, I, Out) :-
context_clause(Y, In, Temp),
secondary umt(X, P, S, Temp, Out)
The smaller non-terminal symbols
context clause, library umt and secondary umt are
themselves decomposed into goals to find smaller non-

such as

terminals symbols and so the process continues until the
lexical element level is reached. This is a top-down
behaviour, as no account is taken of the input list 'Tn' until
terminal symbols of the language are considered. As
Prolog takes charge of the mput and output lList the
clauses for compilation and compilation units will appear
1n the implementation as follows:

Res. J. Applied Sci., 2 (3): 258-265, 2007

compilation([X| Xs], [Y| Ys], [P| Ps]. [S] Ss]) --=
compilation unit(X, Y, P, S),
compilation(Xs, Ys, Ps, Ss),
I.% to stop backtracking.

compilatien(], [1. (], [])

compilation unit(X, Y, 5)
context_clause(Y),
library unit(X, S).

11

>

compilaton umt{ X, Y, P, S)-->
context_clause(Y),
secondary unit(X, P, S)\P.

The predicate compilation above has four arguments,
each of type "list". The first one the compilation umnits
defined within the compilation. The kind descriptions of
those compilation units are specified for every
compilation processed.

The second list represents with-clause dependencies
that belong to every compilation umts defined in the
processed compilation.. The third argument lists parent
units for each compilation unit. The fourth argument
contains program umt 1dentifications,
overloading, renaming, procedure calls that were defined
in a compilation unit. In addition other entities could be
extracted from a compilation unit by including the user's

pragmas,

own specific requirements m the body of the relevant
grammar rule.

The above items of information extracted from a
compilation, we feel, are sufficient for building the
required knowledge base for a programming language,
since other information can be derived from this
knowledge base. The four lists in the compilation clause
will have different lengths in most practical applications.
As an alternative, they could be represented as a list of
quadruples, however this would offer no obvious
advantages.

The analyzer also specifies the constituents of each
compilation umt with a partial semantic description of
each constituent.

A full analysis of compilation units is established in
the following section. Analysis of Compilations and
Software Configuration Management Analysis of
compilations has a great effect on easing the
understanding of software. Tt will provide the programmer
or manager with valuable information concerning the
entities of a compilation.

The kind of information required depends upon the
needs of the manager or programmer. He or she may need
to summaries several packages by tabulating the numbers
of types, subprograms, exceptions and inner packages in

263

each. Alternatively a list of all the type names in a set of
packages, each with a cross-reference to the package
containing it may be needed. Another user may want a
tabulation of subprograms from their parameter types,
sorted by type, disregarding order of parameters.
However, we are interested in extracting the necessary
information for program library, software configuration
management and software construction purposes. Such
information, particularly relating to module dependencies,
is important for sound configuration management.

The information, which has been extracted from a
source code, is represented in the knowledge base as
facts. These facts are best represented as follows:

Unit (UnitName, Description, VersionNumber, Type,
List of Subumits).

Other information is also extracted from a compilation
such as name of procedures and functions with their type
of parameters, filenames, pragma, code which does not
comply with the language grammar rules and so on.

Error behavior of the implemented framework: The
analyzer checks that each statement of the submitted
compilation is syntactically correct, this means a
compilation is successfully analyzed when it is coded
according to the language grammar rules. When a
compilation has syntactic errors the analyzer stops and
reports a failure.

The disadvantages of the implemented parser,
particularly when other tools call it, is that it does not
show the place the error occurred. When the analyzer is
invoked directly in a way similar to invoking a compiler it
shows the place where the error occurred and the code
which does not comply to the language rules 15 returned
as output through the fact 'end-of-file'. Consequently, the
analysis process is cut and a failure is reported.

Program analysis and decision support: The mformation
extracted from the source code of a language can be used
for a number of purposes. These may include:

+ Data query

Abstraction

Rogram evolution and mamtenance

Program analysis and its advantages for decision
support mechanism are discussed in turn in the following
sections.

Data query: Many facts are extracted by the analyzer and
wnserted into the knowledge base that acts as a pool of
information. By means of facts and rules many queries can
be performed to assist a programmer or a manager
determining and reasoning about many objects of the
knowledge base. Data query assists in reasoning about a

Res. J. Applied Sci., 2 (3): 258-265, 2007

program text, source code, constituents, type of
parameter, . . ., ete. This type of reasoming helps not just
in understanding a structure of a software system but it
can demonstrate its reliability (i.e., its correctness with
respect to a specification). Relying on module testing and
system testing alone will not prove the absent of bugs as
Dijkstra reports (1976); “program testing can be used to
show the presence of bugs, but never to show their
absence!”. By means of rules and the above facts queries
such as the following can be answered:

How many versions does MATHS LIBRARY" have?
What components does MATHS LIBRARY' depend
on?

What versions of MATHS LIBRARY' were created
before April 30, 2005 and where are they stored?
What 15 the component that contains a subprogram
function which has one formal parameter of type
complex and it also contains a function that returns a
value of type real?

The last query is probably useful for classifying
compenents for re-usability.

Abstraction: Abstraction is an important principle of
modern software engineering. It 1s a necessary element in
software management and software reusability in which
the essential information that is relevant to a particular
purpose can be exposed. Abstraction 1s an indication for
productivity. That is, raising the level of abstraction may
increase productivity.

The program analyzer abstracts the mnternal structure
of a module including information about renaming and
overloading. In addition, program units
are represented in a form indicating to which category
each belongs, i.e., package, procedure, function or task. Tt
is possible to have a full description of the formal
parameter types of a program unit but this 1s abstracted
through the visible part of a compilation unit.

Program development and maintenance: Other useful
information, for example, for program maintenance and
evolution, can also be represented or deduced. This
mcludes: Stubs of compilation units as shown below:

stubs_of('Complex Relations8936091245/,
package body('Complex Relations'),
[subprogram body(read in),
subprogram_body(calculateimp),

1.

Where the first argument 'Complex _ Relations
8936091245 of the fact stubs_of/3 represents a version of

264

the component 'Complex Relations'. 'Complex Relations'
1s a package body represented by the second argument of
stubs_of/3. This version specifies its own list of stubs as
shown by the third argument of stubs of/3 (ie,
[subprogram_body (read_m), subprogram_body
(calculateimp), . . .]). components that a compilation unit
depends upon:

method clauses(direct 108921181443, [io exceptions,
'SYSTEM'], generic_specification(direct_io)).

where 'direct 108921181443" is the version number of
the generic specification 'direct io' (ie.,
generic_specification(direct 10)) which depends on the
units shown by the second argument of the fact
with clauses/3 (i.e. [i0o exceptions, 'SYSTEM']). This
facility enable a software developer to specify
dependencies of each version. components that depend
upon a compilation unit: this can be found by querying

the knowledge base 1.e

listall units madeoutofdate(decl89310114321, List).
List = ['Complex Relations',

"Manipulate Vectors',

'Rotate Axes',

L]

optimise].

Where 'decl89310114321" 1s a version number of a
component that can easily be traced. There are a number
of software components that depend upon the above
version. These components are computed using the
predicate listall units madeoutofdate/2. The list will be
['Complex Relations', 'Manipulate Vectors',
"Rotate Axes', ..., optimise].

The above types of automatic extraction would expect
to reduce errors compared with other systems based on
makefile where dependencies are recorded manually. This
degree of automation provides a developer with
information that can be used to check consistent and
inconsistent compositions and then can sigmficantly
increases the probability of producing a consistent and
complete configuration with enough information on each
compilation unit. It also assists in testing modules and
integration.

The above information, particularly that concerned
with the interior structure of modules and their
relationships, necessary for the design and
management of re-usable components. Tt is also useful for
software enhancing
understandability. The proposed Program library and

is

construction as well as

SCM system rely heavily on the comrectness of the
dependency and consistency information supplied by the

Res. J. Applied Sci., 2 (3): 258-265, 2007

parser. Information recorded during the course of parsing
is also useful for classification in software re-use and
automatic (re)generation of products. It 13 also valuable in
dentifying and accessing individual objects of
compilations such as procedures, functions, stubs,
exception, renaming, type of parameter, etc).

The results of mamipulation data queries are
presented as relationship tables where a range of
operations 1s provided mcluding selection, projection,
union and other operations provided by relational data
bases (see for instance: Oracle, Ingres manuals).

CONCLUSION

I have proposed, m the study, a way of analyzing
programs using a program analyze written in Prolog.
Prolog is particularly suitable for both prototyping and for
writing natural and programming language parsers. The
JAVA analyse described above encompasses two main
activities. These are:

Translation of JAVA source code into its lexalized
elements and

Applying the JAVA syntax rules to the lexalized
version (the analyzer).

The original motivation for building the analyzer was
to provide better visibility of TAVA programs and as a
basis for building portable JAVA program libraries and to
enhance decision support mechanisms for configuration
management and version control tools, software
construction and software reusability.

REFERENCES

Colmerauver, A, Les Grammaires de Matamorphose, 1975.
Groupe dIntelligence Artificielle, Umversity' de
Marseille-Luminy. Appears as Metamorphosis

L. Bole (Ed), Natural Language

Commurmication with Computers, Berlin, 1978.

Grammars.

265

Dijkstra, EW., 1976. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ.

Frei, HP.,D.L. Weller and R. Williams, 1978. A Graphical-
based Programming-Support System, SIGGRAPH-
ACM Vol. 12,

Tennings T.J. and B.A. Carr'e, 1989. A Subset of Ada for
Formal Verification (SPARK), Proceedings of the 7th
JAVA UK Conference York (AdaUser, Supplement),
pp: 121-126.

Kowalski, R.A., 1974, Predicate Logic as Programming
Language, Proc. IFIP 74, Stockholm.

Malik, D.S. and P.S. Nair, 2003. JAVA Programming: From
Problem Analysis to Program Design, Thompson
Publisher.

MALPAS, 2005. hitp://www.advantage-business.co.uk/
products-malpas.asp, accessed.

Nassi, I and B. Shneiderman, 1973. Flowchart Techmques
for Structured Programming, SIGPLAN Notices of the
ACM, pp: 12-26.

Ng, N., 1978. A Graphical Editor for Programming Using
Structured Charts, TBM Research Report RI2344
(31476) 9/15/1978, IBM Research Laboratory, San
Jose, Califorma.

Pereira, F.CN. and D.H.D. Warren, 1980. Delinite Clause
Grammars for Language Analysis -—- A swrvey of
Formalism and a Comparison with Augmented
Transition Networks, Artificial Intelligence, 13: 231-
278.

Reid, P., 1983. The Use of diagrams and colours in the
display of Ada programs, Ph.D Thesis, computer
sclence department, York Umversity, UK.

Wagner, H.,, Visualization of Structures and Traces of
Software Systems (Tool AURUM), in Practice in

Software Javaption and Mantenance, R
Ebert et al. (Ed.), North-Holland, pp: 167-180.

Wemberg, G., 1971. The Psychology of Computer

Programming, Van Nostrand Reinhold, New York.

