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Ahstract: Thizs study describes a ceramic wall tiles surface quality control classification trainingalgorithms The
algorithin employed statistical approach based on Bayes decision functions and minitmum distance techniques
for classfication. The measured feature wectors of the training tile samples are used by the algonthm to generate
2-Dr dizplay ofthe classifierin feature space. Fuclidean distance between each of the training tile samples and
the test tile sample in the feature space is computed by the algorithm . The test sample iz assigned the clazs to
which 1t 1z closet. Many experiments were conducted using different mumber of defective test tile samples
ranging from 50-150 samples. The classification of these defective samples for three sets gave an average of
1.45% error rate. This classification performance is better than human operator within the shorted time taken

by the machine
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INTRODUCTION

The surface quality of ceramic wall tiles becotnes
tnore and more importance as its demand in the market
increazed rapidly. The gquality ofa wall tile iz decided by
the function of several features of its occurring surface
defects suchas cracks.

In tmost cases, three different classes of tiles are
considered in ceramictiles industry. Tiles are classified

fa) bl

hased on the complex combination of defect features.
Figure | shows sotne example itnages of defective ceratmic
wall tiles. Figure 1{a-d), shows second clags tile images.
There exist a few but still acceptable cracks. Figure 1 (e-h)
has a lots of unacceptable cracks on the surface and is
heen considered as a third class or waste,

Traditionally, the surface gquality of ceramic wall
tiles iz inspected marnually by human  experts that
keep an eye on a production line mowving ata rate of

el i)
Fig 1: Ezample of defective cerarnic wall tile itnages
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Fig. 2: Imagmg system

40-100 items per min (Mital et al., 1998). This is a high
speed to meet in real-time manual industrial inspection
for a single person. It causes many problems, such as
subjective results, incomplete mspection and deciphering
of low-resolution defects (Sun et al, 2003). Recently,
electronic tile classification systems have been introduced
to solve these problems (Aborisade, 2005; Kopardekar
etal., 1993; Hon-Son et al., 1984, Chin and Harlow, 1982).
In such systems the tile surface image is first captured by
charge-coupled device, CCD, camera as shown by the
imaging setup in Fig. 2. After the image thresholding,
some features are identified from each sample. The system
makes the decision on the class unto which the tile
belongs according to the measured features. The system
performance 1s acceptable for first class tiles. However, for
second class and third class tiles, the number of
misclassified samples is large, approximately 45% in
muisclassification ratio. Due to this poor performance in
classification, the tiles should then be reevaluated by
human experts.

In this study, we present a ceramic wall tile surface
classification training algorithms based on more advance
statistical approach. The proposed traimng algorithm
achieves significantly higher performance when 1t is
compared to the traditional classification training
algorithms. The proposed training algorithm is to be
adapted in actual ceramic wall tile factories for everyday
usage.

FEATURES FOR CLASSIFICATION

The classification method defined in this study 1s
based only on visual data. Therefore, the classification
features should be selected from visually perceptible
parameters. The shape and location of the crack defects
are the main features that human visual system detects.

Therefore, we focused on detecting the crack defects by
defining the shape of each crack with as few parameters
as possible. The location of the crack is not a critical
factor for classification, since the classification should be
invariant of rotation and translation of the tile. So the
location of the crack can be ignored in the definition as
one of the shape measures.

For classification the crucial pomnt 1s the distribution
of the cracks on tiles surface. The crack distribution on a
ceramic tile is a random process. Tt is impossible to have
same crack distribution for two arbitrary ceramic tiles. The
uregularity of a crack comes from the fact that, 1t may split
into many branches and the thickness of the crack
changes through these branches. A branch is defined as
the region where we can assume a uniform thickness of a
crack. Therefore, rather than defining the exact crack
shapes (Haralick and Shapiro, 1992) and classifying the
tiles based on these definitions, one should look for an
approximate shape defimtion for classification. The
approximation would not lead to misclassification since
the main criteria is not the shape of a crack but the
distribution of cracks.

The classification could be based on thickness of
each branch, area of each branch, length, equivalenght
diameter and extent of the branches in a crack. If the
number of branches and a measure of the size of each
branch can be defined, these will be sufficient criteria for
comparing two cracks. The methods for calculating each
of these feature vectors.

Area: The pixel area of the mterior of the crack. Computed
as the total number of pixels mside and including, the

crack boundary.

Major axis length: The pixel distance length between the
major axis end points. Computed as

2
Major axisleng‘[h:\/()(2 -X% )2 +(y,-y) L

Where, (x,, y,) and (x;, v;) are the major axis endpoints.

Minor axis width: The pixel distance length between the
muinor axis endpoints. Computed as

2
Minor ax_isleng‘[h:\/(X2 —X1)2 +(Y2—Y1) @

Where, (x,, y,) and (x,, y,) are the minor axis endpoints.

Equivalent diameter: The diameter of a defect circle with
the same area as the region. Computed as
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Area (3

Equivalent diameter = {4 *
n

Extent: The proportion of the pixels in the bounding box
that are also in the region. Computed as the area divided
by area of the bounding box that surrounds the defect.
Where,

Bounding box area = Major axis lengthxMinor axis length

In an attempt to select the best feature vector for
classification, feature variance for each category of crack
is computed as

N 2
o’ = L (%, —X) 4
N-143

Where, N 1s the number of traiming cracks samples that
were measured, x 1s the mean of the
measurement and x, 1s the 1 th actual measurement.

It 13 hard to determine the discrimmnatory features
from the feature variance as the features that have large
variance also have large means. Hence the best
discriminating features is determined by computing the
distance between the means of the two classes normalized
by the variances;

features

— (3

The smaller this value is the nearer will be the class
means and the worse the feature would be for deciding
between the classes. Thus, the feature vector for a crack
are arranged in form of a pattern vectors of the form

X=X, %, .. ., Xn)T

CLASSIFICATION AND DECISION ALGORITHMS

For the classification of a set of ceramic wall tiles, in
this section we described a decision algorithm used to
determine a distance measure for the feature vectors
defined above. The
algorithms is implemented by Bayes decision functions
(Julius and Rafael, 1974)

statistical formulation of the

d(x)=p(C,/X), i=12,..,.M (6)

Where, M 1s the number of classes.

For each class we defined a random classification
variable, 1, (X), with the following properties;

ri(X)—B

With the assumption that E{r,(X)} = E{p(C/X)},
probability density function i1s written as a linear
approximations

1fXEC1 (7)

otherwise

p(C/X) = w'X (8)

Xy 1) are
and the augmented pattern,

Where, w = (w, w,, ..., Wy, and X =(x,,X,, . .
called weight vectors
respectively.

In order to determine the weight vector belonging to
the training patterns of classes of the tiles, we used
increment-correction algorithm. The algorithm at kth
iterative step 1s written as

w,(k+1) = w, (k) + o, X(K)sgn {r [X (k)] - w,(kiX(K)} (9

Where, wy(k) is the weight vector estimates at kth iterative
step and «, is the correction factors. However, using the
defimtion of the sgn function which 1s defined by

oy | 1 ifwiX=0 10
Sgn(wix){—l if w'X<0 e

weight vector belonging to pattern classes C, and C, 1s
expressed in the equivalent form

e ey = | P06 I WO X9 g1
' w, (ko Xk if wiX(k) =1 [X(k)]

The weight vector at k = 100 for class C, and C, 1s
computed as

0.1127 ~0.0236
w=|01576| and | 0.0116 (12)
0.9462 0

With the computed values of the weight vector, the
equivalent decision boundary of the
characterized by a single prototype 1s determined as

two-class

d(x)=d, (x)-d, (x)=0.1363%,+0.1460x,+0.0538=0  (13)
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Fig 3: 2-D feature space rep. of training data with
decision surface

The entire classifier system based on the decision
fuinction iz implemerted in a compnater with a high speed
of computation The system  employed  supetvised,
mirdmum i stance techudgue s for classifi cation. Details of
the classification process follow:

Let (1= 1,2, ... N} denote a set of N prototyrpes
of class C, samples of ceramic wall tile and let = denote
featiwe vector of an wnknowntile sample tobe recogrized
Each sample is a concatenation of its component feature
attributes. 20" and 2 refer to these components which iz
notmaized as approjriate for the feature;

feF= [a{a:rea]l, elequivalent di&meter]l]

With each prototype XY, a ceramic tile idertifier I is
associated.

Comparizon between Z and protofyrpe vector 2 of
each training clags iz petformed using a distanice m easure.
The weighted Fuclidean distance between the test tile
sattiple and each of the prototype samples is compated by

D=D[Z%) =Y uD[ZX;] (14)

rer

Where, wris the featire-weighting coefficients.
Z iz assigned the classto whichitis closet.

[ c i D[z ) <D[Z2 ) forall j i
|, if atherwise

(13)

In order to address the issue of acceptitig or rejecting
patters vector of an wiknown tile which are fot in the
databasze, a more vsefil decision rale is proposed The

decision algorithm involves computing and  storing
threshold T (bro dmensional decision swface gven by
Eq. 13) between the two traning classes. The 2-D featire
gpace represertation of the training data with respect to
the threshold is depicted in Fig. 3. The decision fimction
is comnpted by

¢, acceptif D[ZX'] ST (169

otherwise, reject

&{Z) =

THE DATABASE OF CERAMIC TILE
SAMPLE IMAGES

& detailed discussion of the construction of the
ceratnic wall tiles databage can be found in Aborisade
(20057, Briefly, the database consists of 200 traning
pattern vector data for the two tile classes The tiles
itmages were collected in a laboratory sefting 20 as to
mirdtnize the amownt of preprocessing that is necessary in
order to eliminate complicating effects such as tilt,
rotation, shifting scading and changes in tlwminstion. For
each class the training pattern vector is characterized by
two toeamarements, giving a total of 200 trairing featire
measres per class in 2-D featare space. A mumbers of
pattern vector were also collected and used to test the
tro class system.

Both the database and test pattern wector of the
ceramic tile itmageswere snapped at a dmension of 82x=115
and stored as 2-bit gray scdle. Some of the data test
images are showninFig 1.

EXPERIMENTAL RESULTS

The training patternn wector, X, consists of 200
trainitg data sets for the two tile classes in the database.
Fortraining X consists of o extracted featire measires,
X and Z, in two-ditn ensi onal featire space. X, consists
of 100 atrea featwe meamwes and 2, consists of 100
equivalent diatreter measres, respectively per class The
system is trained to plot at each location in the feahare
space the coordinate (20, 351 To segmernt the training set
into two classes, decision suface describedin Eqg 1313
plotted as shown inFig 3.

After training, the system was tested for correct
classificati on petformance. To see how the petformance
scales with increasing mamber of test samples with real
and smthetic defects in the database, the performance
of the system is looked at as the mamber of test tile
samtiples with urknown classification varied from 50-150
sattiples.
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Fig 4:2.D feahare space rep. of testing data with decision suface

Figue 4 shows the results obtained for the 2-D experitnent. In each trial a different database was
feature space represertation of the testing data Table 1 randomly chozen
showrs the correct classification experimental results for The resits show that the algoritbun seales well and
the test ceramic wall tiles samples. Mote that eachmavber  for the arbitrary test tile samples gives an awverage
in Takle 1 is an average over 3 differerd trials of the classifi cation ervor rate of 1,459 Figure 5 shows how the
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Fig. 5 Training time (in minutes) against the nmumber of
defect samples in the database

Table1: Correct classification results for various number of ceramic wall
tiles in the database

No. of test Train
tile samples Class, G Class, G Error time (imim)
50 50.00 50.00 0 9.2
70 1.43 98.60 0 13.1
90 0.00 100.00 0 19.3
110 30.00 66.40 3.6 24.0
130 22.30 74.60 31 28.6
150 43.30 54.70 2.0 33.6

training time scales as a function of the number of training
tile data sample in the database. Clearly, the traming
scales linearly with the number of tile sample in the
database.

CONCLUSION

An efficient classification training algorithm for the
quality control of a ceramic wall tile has been presented.
We have applied statistical approach in the derivation of
the proposed classification algorithms using 2-D feature
space representation. Evaluation results on a limited
number of test tile samples ranges from 50-150 samples
seemed very promising and demonstrate the effectiveness

of the algorithm in the ceramic wall tile classification
hence, the algorithm eliminate subjectivity in the rejection/
acceptance decisions. The average error rates of 1.45%
produced using the algorithm show a distinct advantage
over human operator. This was primarily due to the
inclusion of distance information in the 2-D feature space.
Finally, the proposed algorithm was detailed. It assures
that nearest neighbor error count of the entire data set 1s
exactly preserved in the condensed data set.
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