Research Journal of Applied Sciences 2 (12): 1194-1199, 2007

M@dWell ISSN: 1815-932X
CENENEE © Medwell Journals, 2007

Multitasking Algorithms for Optimization of Space Structures

K. V. Marthandan
Narayanaguru College of Engineering, Manjalumoodu, 629151, India

Abstract: Various multitasking approaches are investigated for optimization of large space structures. JTudicious
combination, macrotasking and autotasking 1s explored with the goal of achieves a vector zed and multitasked
algorithm for optimization of large structure with maximum speedup performance. Speedup results are presented
and compared for three space truss structures with 526, 1046 and 3126 members.

Key words: Multitasking algorithms, optimization, space structures, vectorization

INTRODUCTION

Optimization of large structures with a few thousands
members such as space stations requires an mordinate
amount of processing time 1if a sequential algorithm and
code is used. Our goal is to develop efficient algorithms
employing both vector processing and multitasking
capabilities of multitasking capabilities of multiprocessor
supercomputers (Adeli, 1992a, b).

Adeli and Kamal (1992a, b) presented parallel
algorithms for optimization of structures through the use
of the notion of cheap concurrency and the concept of
threads. Hsu and Adeli presented a microtasking
algorithm for optimization of structures on CRAY YMP

8/864. In this research, we explore judicious combination

of various multitasking and autotasking with the goal of
achieving a vectorized and multitasked algorthm for
optimization of large structures with maximum speedup
performance.

Computing environment: The computer used in this
research is CRAY YMP 8/864. Tt is a shared-memory
machine with eight processors, up to 32 M words of main
memory, dual instruction mode for 32-bit addressing
multiple memory ports and a 6-ns clock cycle. It supports
vectorization and multitasking in FORTRAN and ¢
computer languages, using the UNICOS operating
system. UNICOS 18 derived from the AT and T UNIX
system V operating system and 1s also based in part on
the Fourth Berkeley Software (CARY, 1990).

The computer language used in this research is
CRAY Standards C version 3.0 (1990). This 1s the first
version of C that supports macrotasking, microtasking
and autotasking. Tt allows macrotasking and
microtasking to be combined. But it does not allow
combination of autotasking with either macrotasking or
microtasking.

Vectorization: On CRAY YMP 8/864 a single vector
operation can produce a vector containing up to 64
values. Vectorization is performed on the innermost
nested loops. The code segments may have to be
rearranged m order to optimize the vectorization
performance. Some complications in the loop structure
may prevent loop vectorization.

Multitasking: Concurrent processing on Cray YAMP
8/864 is performed by macrotasking, microtasking and
auto tasking.

Macro tasking: Macro tasking 1s performed at function
level. Normally, major tasks that can be processed
concurrently are Macrotasking is
implemented by function calls and 1s suitable for tasks
requiring large processing time because its overhead 1s
large compared with that of microtasking. Macrotasked
tasks should be identified when the general concurrent
algorithm 13 developed.

macrotasked.

Microtasking: Microtasking is parallel processing at the
loop level. Tt is implemented by inserting compiler
directives. Existing serial codes can be rather easily
microtasked without creating new concurrent algorithms.
But in most cases and for computation intensive jobs
microtasking by itself does not yield high speedup; it
should be combined with macrotasking in order to achieve
maximum performance.

Auto tasking: Auto tasking is the automatic distribution
of tasks to multiple processors by complier. It attempts to
detect parallelism mn the code automatically. Basically it
combines vectorization and microtasking automatically.

Multitasking algorithms: In the finite element structural
analysis most of the time 13 spent in setting up and

1194

Res. J. Applied Sci., 2 (12): 1194-1199, 2007

assembling the element stiffness matrices into the In this research, three different multitasking
structure load vector and solving the system of linear algorithms are presented and compared. The first
equation for displacement degrees of freedom. Thus, we algorithm, called algorithm A, is based on the use of

will - concentrate on the functiorg “assemble” that autotasking only (CARY, 1990). In the second algorithm,
assembles the structure stiffness matrix “load-vector™ that

assembles the structure load vector and “solve” that
solves the resulting linear equations. Parallel algorithms
are developed and compared using autotasking
microtasking and macrotasking with the objectives of ~ With load balancing. The three algorithms are outlined in

improving the performance of these functions. Table 1.

macrotasking directives are mtroduced m the loop level.
No load balancing is used in this case. In the third
algorithm, both microtasking and macrotasking are used

Table 1: Multitasking algorithms for optimization of space structures with multitasking and vectorization
Algorithm A: Autotasking and vectorization.
Algorithm B: Microtasking and vectorization.
Algorithm C: Macrotasking, microtasking and vectorization.
Set the Number of Processors (NP).
Read in the input data and the starting design variables.
Set 1/u =0.1, iteration= 1 and operation—= 1, where operation is a factor to indicate whether this step is in the analysis stage (operation = 1) or in the redesign
stage (operation=2).
Assemble the structure stiffness matrix.
Do concurrently:
I — Calculate element stitfhess matrices.
A (autotasking) B (microtasking) C (macrotasking with load balancing).
TI- Assemnble element stiffhess matrices into the structure stiffhess matrix.
A (autotasking) B (microtasking with guarded regions) C{microtasking with guarded regions(
5. Assemble total load vector.
Do concurrently:
Assemble the nodal forces into
the total load vector.
A (autotasking and vectorization) B (microtasking and vectorization) C (microtasking with load balancing vectorization).
6. Apply boundary conditions.
Do concurrently:
T — Update the structure stiffness matrix.
A (autotasking) B(microtasking with guarded regions) C (microtasking with guarded regions)
T- Update total load vector.
A (autotasking and vectorization) B (microtasking and vectorization) C (microtasking with load balancing and vectorization).
7. Solve the linear equations.
Do concurrently:
I —Reduce the structure stiffness matrix.
A (vectorization) B (vectorization) C (vectorization).
T — Forward substitutions.
A (autotasking and vectorization) B (microtasking and vectorization) C (microtasking with load balancing vectorization).
III - Backward substitution.
A (autotasking and vectorization) B (microtasking and vectorization) C (microtasking with load balancing vectorization).
8. If aperation = 1, calculate the member forces and stresses.
A (autotasking) B (microtasking) C (microtasking with load balancing).
If operation = 2, go to step 15.
Calculate the objective finction (w)
A (autotasking) B (microtasking) C (microtasking with load balancing)
Tf the difference between the new and old objective finctions is less than 0.1%%, stop and print the results, otherwise, go to step 10.
Set operation = 2.
If there is no constrained displacements, set maximum displacement ratio = 1 and go to step 11. Otherwise calculate the maximum displacement ratio and
gotostep 11.
A (autotasking and vectorization) B (microtasking with guarded regions and vectorization) C (microtasking with guarded regions and vectorization)
11. Calculate the maximurm stress ratio (stress ratio).
A (autotasking and vectorization)
B (microtasking with guarded regions and vectorization) C (microtasking with guarded regions and vectorization).
If there is no constrained displacement go to step 16. Otherwise go to step 12.
12. If iteration = 1, go to step 14. Otherwise if the value of the objective function (w) is less than that of the previous iteration divide the value of 1/u by two
and go to step 14.
Find the active displacements, those
With in 0.1% of the allowable values.
A (autotasking) B (microtasking) C (microtasking with load balancing).
Apply unit loads in the directions of the most violated degrees of freedom one at a time each time go to step 6.

1195

Res. J. Applied Sci., 2 (12): 1194-1199, 2007

Table 1: Continue

Calculate the displacement gradients.

Do concurrently:

I-calculate the element stiffhess matrices.

A (autotasking) B (microtasking) C' (microtasking with load balancing)
T-Calculate the displacement gradients.

A autotasking) B (microtasking) C (microtasking with load balancing).
Calculate the new design variables for the next iteration as follows:

If stress ratio > 1, modify the design variables using the optimality criteria recurrence formula, otherwise, modify the design variables using the optimnality

criteria recurrence formula.
A (autotasking) B (microtasking) C ¢ microtasking with load balancing).
Calculate the new objective function and set iteration =+ 1.

Go to step 4.
Q | Simple support |
]
-

e

16*60" |

| 16*60" |

>

|;1Tr|

F 3
120
v yay YAt
Front elevation

Fig. 1: Example 1 is a 526-members space truss

Examples: We solved three space structures using the
algorithms outlined in Table 1. These examples model
space station structures (Fig. 1).

It consists of 32 equal-span panels in the longitudinal
direction and one square panel in the transverse
directions. Tt has two simple supports at each end and 2
other supports at the middle of the span. Thus, it is a
symimetric continuous two-span truss. The upper nodes
at the middle of each span are loaded n the vertical y-
direction by a 60-kip downward load and m x and z
directions by 20-kip loads. The displacements of the
nodes at the middle of each span in the vertical y-
direction are restricted to 1/200 the of the span.

X
D“ A |;| Slmp rt
q
16*60" | 9 o] 4] Q D

.

=

0
e,
0

=

o
I,E
Bl 100
=

120 [120]
120
- -
Side elevation

m

Fig. 2: Example 3 (3126-member space truss)

Example 2is a 1046-member space truss. He geometry
of this example is the same as that of example 1, but it has
64 panels (twice as many as example 1) and four supports
at quarter points. The upper nodes at the middle of each
span are loaded by a 60-kip downward load in the vertical
y-direction and by 20-kip loads in the x and z directions.
The displacements of the nodes at the middle of each
span in the vertical y-direction are restricted to 1/200the
of the span (Fig. 2).

Example 3 is a 3126-member space truss: The U-space
truss has three wings. Longitudinal direction (similar to
example 2). Tt has 30 simple supports as indicated in
Fig. 3. The loading and displacement constraint are similar
to those of example 2.

119¢

Res. J. Applied Sci., 2 (12): 1194-1199, 2007

C
5
AT

v
1 Theoretical without vectorization (T)
Vectorization only (V)
Algorithm A
Algorithm B
Algorithm C
1 2 3 4

Processors

Fig. 3. Speedup comparisons for the function “load =
vector” in example 1

SPEEDUP RESULTS

We study the speedup due to vectorization and
multitasking for the three examples described m the
previous section using the algorithms a, b and ¢. The
theoretical speedup due to multitasking is definer as
the ratio of the execution time spent by a task in a
sequential program to that spent in a concurrent program
(CARY, 1987).

Speedup results due to vectorization and various
types of multitasking are presented for three main
functions of the algorithms “assemble”, “load-vector” and
solve. The last function 1s divided into 2 parts: Reduction
of the stiffness matrix into the product of a lower
tnangular and an upper triangular matrix and forward and
baclkward substitutions considered together. At the end
of the study we present speedup results for complete
solution of the optimization problem.

Figure 3-5 show the speedup results for setting up
the load vector, setting up the structure stiffness matrix
and the forward and backward substitutions for
computing the nodal displacement vector for example 1,
respectively.

Figure 3 shows that auto tasking improves the
speedup for the function load-vector substantially
because this function consists of only nested loops
without any dependencies among matrix elements and
function calls within loops. Microtasking does not
mnprove the performance of this function substantially.
This is due to the relatively large overhead needed in
microtasking (compared with the amount of the work
done) and poor load balancing which in turn deteriorates

47 Theoretical without vectorization (T) T
Vectorization only (V)
Alporithm A
Algorithm B
Algorithi C ¢
3 B
~
2_
V,A
1_
T T T 1
0 1 2 3 4
Processors

Fig. 4: Speedup comparisons for the function “assemble”
n example 1

4- T
3-

5y

b

B

“a A
2- v

Theoretical without vectorization (T)
Vectorization only (V)
Algorithm A
Algorithm B
Algorithm C
1 L]
0 1 2 3
Processors

e

Fig. 5: Speedup comparisons for the forward/bacleward
substitutions n the fimction “solve” in example 1

the speedup due to vectorization. In algorithm C where
microtasking is combined with macrotasking, uniform,
load balancing 1s achieved. Thus, the effect of stripmiming
1s achieved. Thus, the effect of stripmimng 1s maximized in
algorithm C.

Figure 4 shows that vectorization and autotasking do
not mprove the speedup m the function “assemble”
because of the existence of function calls and the guarded
regions. Microtasking improves the speedup in the
function “assemble” because the amount of work done in
setting up the element stiffness matrices and assembling

1197

Res. J. Applied Sci., 2 (12): 1194-1199, 2007

16 C

Theoretical without vectorization (T)

Processors

Fig. 6 Speedup comparisons for the “function “load
vector” in example 3

- T
4 Theoretical without vectorization {T)
Vectorization only (V)
Algorithm A c
Algorithm B
31 Algorithm C B

VA

Q 1 2
Processors

[
-

Fig. 7. Speedup comparisons for the function “assemble”
in example 3

them into the structure stiffness matrix 1s relatively large
compared with the overhead required in microtasking.
Algorithm C produces higher speedup than both
algorithms A and B.

Figure 5 shows the speedup for the part of the
function “solve’that performs the forward and backward
substitutions for computing the nodal displacement
vector. Both vectorization and multitasking are used in
this part. Algorithm C produces substantially higher
speedup compared with the algorithms A and B.

The speedup results for setting up the load vector,
setting up the structure stiffness matrix and the forward

4n T
3-
(=N
5
g 21 VA
on

Theoretical without vectorization (T)

Vectorization only (V)
Algorithm A
Algorithm B
Algorithm C
0 1 2 3 4
Processors

Fig. 8 Speedup comparisons for the forward and
backward substitutions in the function “solve” in
example 3

El

Theoretical without vectorization (T)
Example 1 (Algorithm C without vectorization) (E1)
Example 2 (Algorithm C without vectorization) (E2)
0 Example 3 (Algorithm C without vectorization) (E3)

T T T 1
0 1 2 3 4
Processors

Fig. 9: Overall speedups

and backward substitutions for computing the nodal
displacement vector for example 3. Comparing Fig. 6-8
with the comresponding Fig. 3-5 for example 1, we
observe that the speedups due to both vectorization and
multitasking increase with the size of the structure. The
increase due to multitasking 1s specially substantial.
These figures also demonstrate the superiority of
algorithm C where we employed a judicious combination
of vectorization, microtasking and macrotasking with load
balancing.

The overall speedup results from the algorithm C for
the complete optimization of three space structure
examples without and with vectorization are presented in
Fig. 9and 10.

1198

Res. J. Applied Sci., 2 (12): 1194-1199, 2007

47
T
E3
E2
3
El
&
B 2
&'
1-
Theoretical without vectorization (T)
Example 1 {Algorithm C without vectorization) (E1}
Example 2 {Algorithm C without vectorization) (E2}
Example 3 {Algorithm C without vectorization) (E3)
0 T T T 1
4] 1 2 3 4

Processors

Fig. 10: Overall speedups, respectively. Tt is seen that the
speedup increases substantially with the size of
the structure

CONCLUSION

Based on this investigation, a number of general
conclusions may be drawn:

* Autotasking works best i programs where most of
the code consists of nested loops. Autotasking can
not be performed when loop iterations contain inter
dependent array elements or when there is a function
call. Most of the speedup due to autotasking 1s
achieved by vectorization Basically it 13 effective
only when the program has a simple structure.

* Microtasking 1s simple to implement but does not
mprove the speedup substantially in complex
problems without combining it with macrotasking.

¢ Judicious combination of vectorization, microtasking
and macrotasking is required in order to develop an
efficient vectorized and multitasked algorithm.

Algorithm C presented in this study is an example of
such algorithm for optimization of large structures
where substantial processing power 1s required even
on high performance machines.

¢ The processing time required for optimization of large
structures increase exponentially with the size of the
structure (number of design variables). Example 3 of
this study has 3126 members and 2226 displacement
degrees of freedom. Development of efficient
concurrent algorithms utilizing the unique
architecture and capabilities of high-performance
computers results in substantial reduction in the
overall execution time.

ACKNOWLEDGEMENT

This research has been partially supported by a grant
from Cray Research, Inc. Computing time was provided by
the Ohio super computer center.

REFERENCES

Adeli, H., 1992a. Supercomputing in Engmmeering
Analysis. Marcel Dekker, New York.

Adeli, H., 1992b. Parallel Processing in Computational
Mechanics. Marcel Delker, New York.

Adell, H. and ©O. Kamal 1989. Parallel Structural
Analysis Using Threads. Microcomputers i Civil
Eng., 4: 133-147.

Adeli, H. and O. Kamal, 1992b. Concurrent Optimization of
Large Structures. Part I. Algorithms. J. Aerospace
Eng. ASCE., 5: 79-90.

Adeli, H. and O. Kamal, 1992b. Co current Optimization of
Large Structures. Part II. Applications. I. Aerospace
Eng. ASCE,, 5: 91-110.

CRAY, 1990. Cray standard C programmers References
Manual, SR-2074 3.0, Cray Research Inc.

CRAY, 1987. Cray Y-MP Multitasking Programmers
Reference Manual, SR-0222, Cray Research Inc.

1199

