Pakistan Journal of Social Sciences 3 (6) 838-841, 2005
© Grace Publications, 2005

An Exact Analytical Solution of K-DV Equation by Extended Direct Method
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Abstract: We solve the K-dV equation by an extended version of the direct method due to Clarkson and

Kruskal.
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INTRODUCTION

The remarkable form of the Korteweg- de Vries
nonlinear partial differential equation (Tyn Mymt-U with
Lokenath, Third Edition)
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U+C(1+)U+2h U, b
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was introduced by Korteweg- deoVries in 1895, to
describe long water waves in a channel of depth hy, where

a

é Cohy is a constant for fairly long waves, C, =
(ghy)".U is displacement of wave and g is the acceleration
due to gravity. Several methods have been applied to
solve this equation with considerable degree of success
-4 Tn this paper, our purpose is to apply the extension of
Clarkson and Kruskal direct method to obtain new
solution of (1).

An Extension To The Direct Method of Clarkson and
Kruskal: We can easily transform from the remarkable
form of the K-dV nonlinear partial differential equation (1)
to the simple form of K-dV equation

U +UUL+U,=0 @

This new method 1s similar to the original method but
begins with a more general concept: the usual idea is to
seek reduction to a single ODE, instead, we seek a
transformation which “reduces” the given PDE to a
system of ODEsmp( & ) and g (1) by means of the
Ansatz

u(x,t) = alx, th Blx, OpER ) + v(x, gz, t)) - (3)

Now we substitute equation (3) into our given K-dV
equation and impose that the result is a pair of ODEs in.

We consider the general 3” order PDE in two
mdependent and t p(&)and gin)

variables x

Ao Ut > et Uit e Ut » U > U U WX 1)=01(4)
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Substituting equation (3) mto (4) we get
8B S U ,qn,p,q,a,ﬁ,v,i,n;x,t)zo (5)

2P0 PP

where ¥ is a known function which depends on the
x and t derivatives of arguments and which are functions
of these variables. Next we divide equation (5) into two
separable equations, which are ODE and normalize the
coefficients of powers and derivatives of p and q mn each
equation, n exactly the same way as m the direct method.
There are two cases to consider:
*  When &=n:1If &x.t)=n then we divide equation (5)
into a pair of coupled ODEs for P® and q(z ). There are
of course many ways in which we may partition (5) in this
manner, each distinct partition, perhaps vielding different
solutions/ reductions.
When &= n : Inthis case we must divide equation (5)
into a pair of ODEs, which are not coupled one for p(z)
and the other for q ().

We now apply this method to a specific example.

Extended Direct Method For K-dV Equation: We consider
the K-dV equation in the form

Upt U+ U = 0 ©
(X, U B, DIpIEX, 1) + y(X,tlg(n(x. 1))

Let u(x,t)

On substituting the value of Uy, Uy & U in equation
(6) we get

PrraPlE, ik Fngy oy ik +p§§[3ﬁxz(€ ? +32l5<EXX A 43Ty 7
3 ]+ PPR7E, +ag v, +p7BB, +q7yy +p§[ﬁ§t+mﬁ§ +
ﬁvqi +ﬁ§XXX+35X§H+3ﬁXX§X]+q [vnt+[57pn +ayn +ym_ . (7)
+3y N, 30 E 1+plB, +ob +a B+Bv q+yBa+b_ 1+

X XX XXX
q['y toy FO Yy ]+oc +(m +oc K_0
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We see from the coefficients of the 3™ order
derivatives of p and q in equation (7), that there are four
cases to consider (I) 5N, 70 (1), &="x=0 (111)

£x=0 with M =0 and (iv) Le=0 with n,=0

Notation: Unless otherwise stated, we use the following
notation: T, 1 =1,2, ... ... are functions intreduced when
normalizing coefficients of powers and derivatives of

p(&) and q(n) are to determined; the corresponding
symbols v, 1 = 1, are introduced if the explicit
(rational) form forT; 15 known, in special casesis
I, necessarily constant and we write > Ay
are miscellaneous constant introduced during the
computation, for example, constants of integration; ¢,, ¢,

are constants mtroduced upon integration of the

!
s

s een

reduced equations (ODEs): we reserve the prine,

represent derivatives with respectto tthatis'. _d

dt

The case &an¢0 : As stated above, we must divide
equation (7) into a pair of ODEs.

to

P, B(Ex) +P,,[3, (&) +3pL, £ 1+ PP, (BY &, +P*pp, +
P IBE +apE, + Bl + B, & + 385 E 1+ PIB + of, + o, f+ Py, q +
B, a+ P 1+ P, dbyE, + A -3)a, +aa, +a,, ]=0

(8)

and

3 2 2 2
By (™ G377+ 3 N 1 +aq (7 + g7 +
A g BYPN oM M I 3T ©)

XXX XX X
q[}'t Oy oL Y+ YXXX] + B[txt + o+ OLXXX] =0

Where we have mtroduced, 8. 08 <1, Wenow normalize
the coefficients of PP¢- P and Pe against that of

m equation (8) and use freedom of scaling and translation
of Peee and freedom to redefine p(&). Finally we get

X (SR (Y

$(t)
whered(t) are & 0 (t) function of integration, to be
determined and consequently the coefficients of p 1s
found to be identically zero. Similarly we normalize the
coefficients of qq, and ¢ against that of g, in equation
(9), then use freedom of rescaling of q(1) and redefine 1
(x,t). We get

p=0%t) ; t-xp+6)  (10)

nexp()+ 3ty = n)

(10

where p (1) and ¥ (t) are functions of integration to be
determined.

Substituting results (10) and (11) into equation (8)
and (9) and normalizing the remaining coefficients of
equation (8) and (9) approprately, we obtamn the
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determining system:

T ()=xu'+ U’—@ (12)
u4F2(n):2u’f”% (13)
87T L(6)=0-B)[x(267- 4071+ 204/~40' (14)
# 5¢2r311(”)=5[x(2¢'2— 09")+ 209"~ $6"] (15)
and p(&) & q(m satisfy
Pege TPP, [,&)=0

and + +T +T +T_..(m=0
qmm qq,q 1('n)qn 2('n)q 311('n)

Notice that (13) 1s a differential consequence of (12)

i.e. taking the x derivative of (12) yields (13) so we may

neglect (13) as a constraint and use it only to compute .

[ M Since &  islinearinx (cf eq. (10)) then it is clear
from (14) that

TySr=rys 41y,
Therefore,

+ +Y,. &+7,. =0
Pess * PPy v311% T3,
Integrating with respect to & we get,

=0
1

1
4

2,1, .2
=Y £y, E+C
AL 27311é 7310&

This is an ordinary differential equation of P(%), ie. the
reduction from our given PDE to ODE.
Now from the second equation we have

L Fl(n)qn+ T (mg+T__(m)=0
This is also an ordinary differential equation of g(m).

The case 5 =" N.=0 Weset £=N=tin this case,
without loss of generality. Hence equation (8) and (10) are
simplified considerably. From (&) and (9) we get finally:

PPy

2
and, }'qq + WXq + [}'t + (ot}')X + ym]qu 6[0,t + OLO(,X + aXXX]: 0(17)

BB P IR+ G +B T+ () par(1-8)oy +oex +o)=0 (16)

Normalizing the ceefficient of p’ and p against that of
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Pe and the coefficient of q° against that of ¢* and using
the freedom of scaling in both p and q and translation in
P we get:

Bix, =% +yit), y(x,t)=x+0o(t), u(x,t):M (18)

X+ (L)
where W(t), o(t), and. (1) are functions of integration, to
be determined.
Normalizing the remaining coefficients in equation (16)
and (17) we obtain the determining system:

(x+ o) T{t)=o+ (X+0‘)ch+ o' (19)
(X+yn) FZi(t): (1-3) (OLt oL + OLXXX) (20)
(X+1p)FZil(t)= 2x+p(t)+ o(t) (21)
and, (x+ U)Fzﬁ(t)zs(atJr OLO(,X+ axxx) (22)

Substituting equation (18) mnto (20}, (21) and (22) and after
some calculation we get:

Toi=Tou=0 Toy=2 (23)
y'=0 (24)
OL'O—SquJ”+qJ’2=0 (25)
' 2 2 .
o Wy gty =0 (26)
3OL’0W2*W”W3+ 24]:4]27 QOLOlIJlIJ’* 0(,02: 0 (27)
and, o l,u3— 20 l,uzqf—a 2qJ—60L — 6y =0 (28)
" 0 0 0 0
Integrating equations (24) and (25) we obtain:
2
lp(t)_klt+12 and ao(t)_k?,—kl t (29)

Equation (26) 1s identically satisfied using after (24) and
(25). Substituting equation (29) mto equation (27), we find
that all terms involving ‘t” vanish to leave simply:
2 2, 2
Ay 2R A+ A RS0 (30)
which gives A, in terms of 4,and A,.
Again on substituting equation (29) into equation (28) we
get:
2,3 2 2
RN N B SO SR 7 W W 31)
which also gives 4, in terms of Aand A,
From (18) and (19) we get:

840

L (=0 (32)
o' —y=0 (33)
2y(c’ —y)=0 (34)
and, o w00, o+ Sy =0 (35)

The new dependent variables p (t) and g (t) now satisfy:

P+ PO+ P (1) -0 (36)

and  q()+q7(1)=0 (37)
1
Integrating (37) with respect to t we get, 4=y and
equation (36) now becomes,
, t
P+ pi+ 2o
1
On integration this equation we get: P(t):a
Therefore, p(ti=——, T (1)=0 and q(t)=1 (38)
tlnt” 1 t

integrating (33) we get (cf. 29):

T(t)=A b+, (39)

We note that equations (34) and (35) vamsh identically.

Reduction: We are free to translate x — x-A, and therefore
setA,=0 without loss of generality. Hence we obtain the
exact solution:

u(xty = alx, Ur Bl Op(E(x, 1) + v(x tha(n(x, 1)

becomes,

?Lq—ﬂ.](x-#).]t)Jr X+ A]tJr X+t

ux.t= tint t

X+ klt
That 1s,

u(x,t):—kar §+%ﬁ

X+ hlt t (40)

This 15 the complete reduction 1.e. solution of K-dV
equation.
Similar analysis for the cases of .
§X¢0 & 'qx=0 and §X=0 & T]X;¢0

CONCLUSIONS

Currently, there is much mathematical interest in the
determination of similarity reduction of a given PDE. To
find some similarity solutions of a nonlinear physical
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problem, one may use the classical Lie group approach,
the non-classical Lie group approach, the direct method
and the multiple simngular manifold method. Though the
direct method has been widely used to find the similarity
solutions for many real physical models, but Extended
Direct Method 1s more general concept to get the solution
of non-linear PDE like K-dV equation. However, it is just
when the Clarkson and Kruskal direct method was
developed, much more similarity reductions for nonlinear
system were found By using this method we have
computed new classes of solutions of K-dV equation. Tt
appears likely that the application of the Extended Direct
Method to a Partial Differential Equation of higher order
(other than K-dV equation) will generate an equation
equivalent to (7) of correspondingly higher order wlich
might lead to reductions to two or more different systems
of Ordmary Differential Equations. This characteristic of
the Extended Direct Method adds complexity, but each

841

case may be treated separately. In fact it should be
considered a positive feature as all possible partitions
may be obtained algorithmically and those leading to
trivial reductions eliminated in a straightforward manner.
Finally the solution found by our method can also be
used as models for numerical experiments differing from
known exact solutions of K-dV equation.
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