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Abstract: The Classical Linear Congruential Method for generating uniform pseudorandom numbers has some
deficiencies that can render them useless for some simulation problems. This fact motivated the design and
analysis of Non-linear Congruential Methods for the generation of pseudorandom numbers. Inversive Methods
are an interesting and very promising approach to produce umform pseudorandom mumbers. Researchers
present a critical analysis of the recent developments on the topic. The exposition concentrates on recursive
mversive congruential generators and digital inversive congruential generators.
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INTRODUCTION

It 15 well known that generating good and reliable
pseudorandom numbers 1s crucial for various fields that
depend on the computer. The success of Monte Carlo
studies or any computer simulation that requires
randomness depends to a large extent on a good source
of random numbers. General background material on
pseudorandom numbers unit mterval [0, 1] can be found
m the books of Gentle (2003), Knuth (2011) and
Niederreiter (1992) and in the survey articles of L'Ecuyer
(1994). The Classical Methods for the generation of
pseudorandom numbers such as Linear Congruential
Method and Shift-register Methods produce sequences
of pseudorandom numbers with too much intrinsic
regularity (Knuth, 2011).

This state of affairs motivated the last few years
various researches on the design and analysis of
Non-linear Congruential Methods for the generation of
pseudorandom numbers (Eichenauer-Herrmann, 1993,
L'Ecuyer, 1994). The present research therefore,
concentrates exclusively with the developments m this
area which include the analysis of the Tnversive Method
which is a particularly attractive non-linear approach. In
fact, no formal defimtion of a sequence of umform
pseudorandom number can be given, we only have
certain characteristics in mind when we talk
such a sequence (Alhakim and Akinwande, 2009):

about

* The sequences 1s
algorithm

¢+ The sequences should be uniformly distributed on
the umt interval [0, 1]

» It should pass relevant statistical and theoretical test

for randomness

generated by deterministic
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All standard methods of generating uniform
pseudorandom numbers are based on congruences and
they all yield periodic sequences. The desired properties
of sequences of pseudorandom numbers can be
summarized as follow:

»  Long period length

*  Good statistical properties

*  Good equidistribution properties

s Little mtrinsic structure (such as lattice structure)
»  Reasonably fast generation

MATERIALS AND METHODS

General Non-linear Congruential Method: The coarse
lattice structure inherent i the Linear Congruential
Method can be broken up by using Non-linear Method to
generate umform pseudorandom number. A general
framework for Non-linear Methods was described by
Niederreiter (1992). Let: M = p be a large modulus and
of elements 7, by the
Ist-order recursion y,,, = f{y,) med p for n>0 with mnitial
value y, where, ['1s a fixed integer-valued function on Z,.
Since, the recursion is of lIst-order the sequence is
periodic with period of y,<p. Now, suppose f is such that
the sequence y;, y,, ... 18 purely periodic with least period
length p then the map n€E = v, £F can be represented by
uniquely determined polynomial geF [x] with d = deg(<p).
Hence, we can write y, = g(n)eF, for n>0 where, n is also
viewed as an element of I,. The pseuderandom number x;,
Xy, ... [0, 1] are obtained by the normalization:

generate a sequence Vi, Yi, ...

Xn:lyn forn=0
p
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We obtained a Non-linear Method if the function f
can not be represented by a linear polynomial modulo p.
This type of pseudorandom numbers was first proposed
by Eichenauer et al. (1988). Inversive Methods i uniform
pseudorandom number generation achieve non-linearity
by employing the operation of multiplicative imnversive in
suttable algebraic structures such as finite fields and
residue class rings of the integers. We shall concentrate
on the case of the finite fields. Thus, let denote the finite
tield of prime-power order q by F_. In the case where, q is
a prime p, we identify F, with 7 as a set. For convenience,
we extend the definition of multiplication inversion as

follows:
(x—l
0

Where, cel’, Then, the map ,, 5 becomes a
permutation of F,.

if a=0
if =0

@

Lattice test: The following defimtion follows
Niederreiter (1992) and makes sense for any congruential
generator with prime modulus.

Definition 1: For a given s>1, a congruential generator y,,
¥y, ... with modulus M = p prime passes the s-dimensional
lattice test if the vectors y,-y, n=1, span FS° where,
Yo = (Yo Yars ooor Yars1 JEF, fOrn=0.

We observe from Niederreiter (1992) that a linear
congruential generator with prime modulus passes the
lattice test only for dimension s = 1 but for non-linear
congruential generators, the value of d = deg(g), g bemng
the polynomial introduced 1s decisive. We now state the
following theorem without proof which was shown by
Eichenauer et al. (1988).

Theorem 1: A non-linear congruential generator with
prime modulus passes the s-dimensional lattice test if and
only if s<d = deg(g).

Remark: d =1 is impossible for a non-linear congruential
generator. The congruence y, = antb (mod p) leads to the
recursion v, = y,+a (mod p) which 18 a linear
congruential generator with multiplier 1 (which 1s a bad
cheice). The degree of a permutation polynomial over F,
does not divide (p-1).

Since, we only consider non-linear congruential
generators with maximal period length p, gln) is a
permutation polynomial. Hence, we have that 3<d<p-2.
Thus, that any non-linear congruential
generator with prime modulus and maximal period length

it follows

P passes, the s-dimensional lattice test at least s = 1-3.
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Uniformity and independence: The one-dimensional,
respectively the s-dimensional discrepancy allows us to
measure how well given sequences of pseudorandom
numbers fulfill the two basic requirements for
pseudorandom numbers, uniformity and independence.
Beside discrepancy, there exist other measures for the
other uniformity of pseudorandom mumbers. We will only
consider the (extreme) discrepancy which is the most
important measure in connection with pseudorandom
numbers.

Definition 2: The s-dimensional (extreme) discrepancy of
aset P=(x,,5 in[l, O) is defined by:

Al F)

2G|

5 —
D5 (X, %5 s Xy )= sup,

where, T 1s the class of all subintervals j of [1, 0)° of the
form:

i=] M. v, 0=y, <v, <land A(j, P)
1=1

denotes the cardinality of Prj. For a lst-order,
congruential generator with modulus M and maximal
period length M, we clearly have:
Ml}
SEve

By the result of Niederreiter (1992), we have:

1 2
XX, Xy 3=0,—, —, ..
S

And so, we have:

Theorem 2: For any lst-order, congruential generator
with modulus M and per (x,) = M, we have:

1

Dy (g Ko a Xy )= Vi
Now, we will provide wupper bounds for
the s-dimensional discrepancy (s22) of overlapping
s-tuples x, = (X, Xups ...y Xugq) Of non-linear congruential

pseudorandom numbers with primes modulus. The
following theorem from Eichenaver-Herrmann and
Niederreiter (1994a) 15 only useful if mumber d = deg(g) 1s
known. We observe that 1t has been possible to obtain
discrepancy estimates even for parts of period and the
result for special types of nonlinear congruential
generators can be improved considerably as illustrated in
Niederreiter and Winterhof (2001).
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Theorem 3: For a sequence of non-linear congruential
pseudorandom numbers x,, x,, ... with prime modulus p, we
have:
(s) 148
D7 (%, %50, 3= 1 (1 ;) +

(d- 1)p’”2(1:‘—210gp+ 1.72F for2<s=d

(1)

DY (g Xy Xy ) 1= (1= 2 +(d =P
(ilogp-s-l.’/Z)“1 for 2<s<d-1 1<N=<p
Where:

(2

Xn = (Xna Xn+13 R xn+s—1)

We observe that the degree d of the polynomial g
plays an important role. If d is of magnitude p'? or larger,
the bounds become useless, since we always have
0zD,®<1. The second inequality in Theorem 3 which
gives a bound for the s-dimensional discrepancy for parts
of the period p 1s only useful if N, the number of points 1s
of higher order of magnitude than p'(d-1). Thus by
Eichenauer-Herrmann (1993), the upper bound in Theorem
3(ii) is when s = 1 in general best possible up to the
logarithmic factor. Researchers now consider special
cases of non-linear congruential generators.

The
congruential generators was first proposed by Eichenauver
and Lehn (1986) and 1s defined by the recursion:

Inversive congruential generators: inversive

yn+1 = ayn + b mOd p

for n=0 where, a, b and y, are well chosen integers in I,
For ceF,, © is defined as the unique solution modulo p of
the congruence ifc€=Imodp if ¢ > Qand c = 0 if ¢ = 0.
Clearly, pz3. A sequence of
pseudorandom numbers xg, X, ... in [0, 1) is obtained by
normalization X, = y,/p.

ce=c"*modp for

Period length: The parameters a and b should be chosen
in such a way that the least period length of the sequence
X, X, ... 18 as large as possible. Since, an inversive
congruential generator 1s defined by a 1st-order recursion,
the maximal value for the least period length 15 equal to
the modulus p. The following theorem which was proved
by Eichenauver and Lehn (1986), yields a sufficient

condition for maximal period length p.

Theorem 4: If a, beF, are such that the polynomial x*-bx-a
is primitive over F, then the sequence x,, x,, ... of inversive
congruential pseudorandom mumbers with modulus p
satisfies per (x,) =p.
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A monic irreducible polynomial over F, of degree 2 is
called a primitive pelynomial over I, it hasaroot m I ,
that generates the cyclic group F,;". Parameters a, beF,
such that x’-bx-a is primitive over F, are tabulated by
Hellekalek and Entacher (1995) for some primes such as
p = 27-1. The condition that x*-bx-a is a primitive
polynomial over F, is sufficient but not necessary for
maximal period length p.

A polynomial x*-bx-a is called an Tnversive Maximal
Period polynomial (IMP-polynomial) if the corresponding
inversive congruential generator with parameters a and b
yields a sequence with maximal period p. An algorithm to
find all IMP-polynomials over a given field F, was given
by Chou (1995).

Lattice test: Consider the following theorem which proof
15 based on the corresponding result for the general
non-linear congruential generator discussed before and
can be found by Niederreiter (1992).

Theorem 5: An inversive congruential generator with
prime modulus p and maximal period length passes the
s-dimensional lattice test for all s<pt+1/2. We recall that
the lattice structure of linear congruential generators is
completely different. Linear congruential generators fail
this test for all dimensions s=2.

Hyperplane structure: The following strong non-inearity
property of mversive pseudorandom numbers was shown
by Eichenauer-Herrmann (1992) which stands in sharp
contrast to the lattice structure of linear congruential
pseudorandom numbers.

Theorem 6: Let =2 then for every inversive congruential
generator:
Y,.,=ay,+b mod p

with prime modulus p and maximal period length p
any hyperplane in I’ contains at most s of the points
Vo = (Vi Yarts -os Varer) With O<n<p-1 and v, ... yu.0* O
Observe that the condition y,,.., V..,* 0 elimmnates
exactly (s-1) of the points v, with O<n<p-1 (these are the
pouts on the boundary of [0, 1) while the remaming
(p-s+1) points avoid the planes.

Independence: The discrepancy bound for the general
class of non-linear congruential generators does not
provide a bound for the discrepancy of inversive
congruential pseudorandom munbers, since we have
d = deg(g)=p+1/2 in case of the inversive congruential
generator. The following upper and lower bounds for the
discrepancy of inversive congruential pseudorandom
numbers are due to Niederreiter (1992).
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Theorem 7: For inversive congruential pseudorandom
numbers X, X, ... with prime modulus and maximal length,
we have:

(=) LY
DI (%, %5 Xp,l)sl—(l—;) +
(2572

P”2

for $=2 where, X, = (X, Xoaps s Xpeot )y 120, The inequality
gives a bound of the discrepancy of the points x;, x,, ...,
X, For the discrepancy of parts of the peried, ie.,
D%, X, ..., %y,) with N<p, there are no thecretical
results available. The next theorem shows that the order
of magnitude of the bound in theorem 7, p**(log p)° is in
general, best possible up to the logarithmic factor. The
total number of primitive polynomials x*-bx-a over F, is
(d(p*-1)¥2 where, ¢ is Euler’s totient function.

- %‘)(ﬁlog p+ 1.72)5

Theorem 8: Let p=3 be a prime and let O<t<<1. Then, there
are more than A (t)(p*-1)/2 primitive pelynomials x*-bx-a
over F, such that for the corresponding inversive
congruential pseudorandom numbers with modulus p, we
have:

t
(s) -142
Dy (Xn,xl,...,xp,1)> 2'n+4p
for s>2 where, A (1) satisfy:
_ 2
=0 for al t

LimA, ()=
p—xo

4-t

Recursive inversive pseudorandom numbers: We choose
a large prime modulus p and use the Recursive Non-linear
Method with the special function T@=92+b for all zeF,
where a, bel, are fixed parameters with a#0. The resulting
pseudorandom numbers x,, x,, ... are called recursive
(congruential) pseudorandom numbers which were
introduced by Eichenauer and T.ehn (1986). Thus, we have
per(x,)<p.

We cbserve that every primitive polynomial over F,
is an IMP polynomial over F,. Hence for every prime p,
there exist a, bel’, such that we can have per(x,) = p. The
s-dimensional serial test for recursive inversive
pseudorandom number was first investigated by
Niederreiter (1989). And, it was shown that if per(x,) = p
then the discrepancy D, of overlapping s-tuples for the
full period satisfies:

D’ = O@p™"*(log p)

For l<s<p, the same bound holds for non-
overlapping s-tuples as well. This upper bound is in
general best possible up to the logarithm factor. Since in
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practice, we never exhaust the full period of a sequence of
pseudorandom number, it 13 more inportant to have
discrepancy bounds for parts of the period.

Discrepancy bound: The process made in the theory of
certain exponential sums makes 1t possible to find
nontrivial discrepancy bounds for individual secuences
of these pseudorandom number for parts of the period
since the introduction of recursive inversive
pseudorandom number in 1986. The method for bounding
D, for parts of the period is sufficiently general that it
permits the treatment of sequence x, %, ...
inversive pseudorandom number for which t = per(x,) 1s
arbitrary. The problem was solved by Niederreiter and
Shparlinski (2001) for the dimension s = 1 and by
Gutierrez et al. (2000) for s>2. The results were stated
without proof m the following theorem:

of recursive

Theorem 9: For overlapping s-tuples of the recursive
inversive pseudorandom number, we have:

D = O(N"*p"*(log p)’) for T<N<t

A similar result to the thecrem 9 for recursive
inversive pseudorandom number with prime power moduli
was established by Niederreiter and Shparlinsla (2000b).
Their method can also be applied to the general non-linear
generators described before. For instance, they proved a
non-trivial discrepancy bound in the case where the case
where the modulus M 1s a prime. In fact, this bound can
be extended from 1st-order recursions to recursions of
arbitrary order m=1. In general setting, the modulus 1s a
large prime p and the generating recursion has the form:

Yorm = T(¥as s Yaerny) mod D

for n=1 where, fis a polynomial over I, in m variables and
Yo ¥ > Yui€F, are initial values. A non-trivial
discrepancy bound for this case was obtained by
Gutierrez and Gomez-Perez (2001).

Digital inversive pseudorandom numbers: Let p be a
prime and suppese F, is a finite of order q = ¢ for some
integer k>1. The preferred choice p = 2. For fixed
parameters o, PeF, with «#0, we generate the sequence
Yo V1. -.. of elements of F, by the recursion:

Yorr =¥ +P

for n=0 with initial value v,. If {A,, .., A} 18 an ordered
basis of the vector space F, over F, then we have the
unique representation:
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5
v, =2 cVA forn=0
i

with all ¢, €F,. Now, a sequence x,, X, ..
mversive pseudorandom numbers 1s defined by:

of digital

5
x,= > op forn=0
i

These pseudorandom numbers were introduced by
Eichenauer-Herrmann and Niederreiter (1994b). The
speedup in the generation algorithm of digital inversive
pseudorandom number results from the fact that whereas
multiplicative inversion in F, requires in general O(log )
field operations in the case q = 2%, we need only O(log log
q) field operations due to a specialized inversion algorithm
for this case. Obviously if per(y,) = t then per(x,) = t and
we clearly have t<q. The criterion for having t = q is
completely analogous to that for maximum possible period
length m the Recursive Inversive Method stated.
Particularly, we can always achieve t = ¢ in the Digital
Inversive Method. The s-dimensional serial test digital
inversive pseudorandom number was first studied by
Eichenauer-Herrmann and Niederreiter (1994a, b). Tt was
shown that if t = q then the discrepancy D,” of
overlapping s-tuples for the {ull period satisfies D, =
0(q"*(log q)") and this upper bound is in general best
possible up to the logarithmic factor. Niederreiter and
Shparlinski  (2000a) obtained the
discrepancy bound for the general case 1<N<t<q. The
resulting discrepancy bound is completely similar to that
in theorem 9.

1st non-trivial

Theorem 10: For overlapping s-tuples of digital inversive
pseudorandom number we have D, = O(min(N"'q"*log
q, N7y (log q)* for 1<N<t. We now describe briefly a
new variant of the Digital Tnversive Method which was
mtroduced mdependently by Levin (2000) and
Niederreiter and Winterhof (2000). Suppose q = p* and let
{Ay, ... Ay} be an ordered basis of the vector space F, over
F, then we define £ €F,, n=0by:

k
& =2mk
=

if
k
n= Z;n]pJ_l mod g
=1
with O<n<p for 1<j<k. Fora given o, BeF, with ¢ # 0 we

generate a sequerice Ty, 1), ... of elements of F, by the
explicit formula:

n,=o&, +pforn=0

We have the unique representation:

k
M, = . dVA forn=0

i=1

with all d,"¢F, Finally, we derive explicit inversive
pseudorandom numbers by putting:

k . .
X, = Z:dfj)p_J forn=0
1=1

Obviously, per(x,) = q. In the special case k = 1, we
get the explicit inversive (congruential) pseudorandom
numbers. With an appropriate definition of successive
elements, the following discrepancy bounds were shown
by Niederreiter and Winterhof (2000).

Theorem 11: For digital explicit inversive pseudorandom
number we have with a proper definition of the serial test,
D, = O(min(N'q" log q, N ""g") (log q)° for 1<N<q
and D,¥ = O(q"(log q)). Digital explicit inversive
pseudorandom number can also be wused for
Parallelized Simulation Methods as was demonstrated
by Niederreiter and Winterhof (2001). In order to generate
t parallel streams of pseudorandom numbers with 1 <t<q,
one chooses for eachi =1, ..., t parameters ¢; and B, in the
roles ¢ and P, respectively in such a way that the
elements o, B, .., ¢ ' P of F are distinct. Then, the
generated parallel streams simulate t independent
uniformly distributed random variables.

RESULTS AND DISCUSSION

Firstly, mversive congruential pseudorandom number
are vastly superior with respect to lattice structure in
comparison to the Linear Congruential Method where a
laborious calculations are needed to find multipliers that
yield a nearly optimal lattice structure even for a modest
range of dimension. Also, inversive congruential
pseudorandom number show a better behavior under the
serial test thus it display more wregulanty in their
distribution and so model truly random numbers more
closely than linear congruential pseudorandom mumber.
The Digital Inversive Method for pseudorandom number
generation has several aftractive properties. First of all,
there exists a handy criterion for the maximum possible
period length q = p* namely that x*Px-¢ is an IMP
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polynomial over F,. The property that x*-Px-e is a primitive
polynomial over I, provides a sufficient condition for the
maximum period length q. Any digital inversive sequence
with meaximum period length show mnice statistical
independence properties in the sense of asymptotic
discrepancy since, there exist digital nversive sequences
with a discrepancy D, of an order of magnitude at least
q " Digital inverse pseudorandom mumbers have the
usual merit of inversive pseudorandom numbers, namely
that once the maximum possible period length 1s achieved
then they satisfy the wupper discrepancy bounds
urespective of the specific choice of the parameters ¢ and
P in the recursion 1. The most convenient practical
implementation of the Digital Inversive Method arises if
we choose p = 2 and a sufficiently large integer k such
that an acceptable maximum period length q = 2* is
attained. This choice has the additional advantage that
allows a fast implementation of the necessary arithmetic.
One step of the recursion 1 requires then only O(log log
q) multiplications i I, one additicn in F, and some cyclic
shifts of coordinate vectors. This should be contrasted
with the cost of one step in the Recursive Inversive
Congruential Method with prime modulus which in the
present setup corresponds to the choice where p 1s a large
prime and k = 1. In the latter method, the number of
required multiplications in I, in one step of the recursion

is O(log p).
CONCLUSION

Congequently for comparable maximum period
lengths the Digital Inversive Method with p = 2 allows a
significantly faster generation of the pseudorandom
mumbers than the Inversive Congruential Method with
prime medulus. The Inversive Congruential Method
allows a wide choice of parameters, all of which lead to
guaranteed and comparable structural and statistical
properties. This feature can be of great practical value n
various parallelized simulation techniques in which many
parallel streams of pseudorandom numbers are needed but
m case of Linear Congruential Method with prime
modulus p, just choosing any primitive root a modulo p 1s
certainly not enough.
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