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Abstract: Tn this study, a Bayesian analysis of Generalized Geometric Series Distribution (GGSD) under different

types of loss functions have been studied.
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INTRODUCTION
The probability function of Generalized Geometric

Series Distribution (GGSD) was given by Mishra (1982) by
using the results of the lattice path analysis as:
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Tt can be seen that at fp =1, Eq. 1 reduced to simple
geometric distribution and 1s a particular case of
Jain and Consul (1971)’s generalized negative binomial
distribution in the same way as the geometric distribution
is a particular of the negative
distribution.

The various properties and estimation of Eq. 1 have
been discussed by Mishra (1982), Mishra and Singh
(1992). Hassan et al (2007) discussed the Bayesian
analysis under non-informative and conjugate priors. In
this study, the Bayesian analysis of Generalized Geometric
Series Distribution (GGSD) under different symmetric loss
functions have been studied.

case binomial

Preliminary theory: Let x be a random variable whose
distribution depends on r parameters 8, 6,,...6, and let Q
denotes the parameter space of possible wvalues of
0. For the general problem of estimating some
specified real-valued function $(6) of the unknown
parameters 8 from the results of a random sample of n
observations, we shall assume that ¢p(0) is defined for all
BinQ

Let x,, %,,... x, be the sample observations. Also, let
0 be an estimate of ¢(0) and let 1.8 ¢ be the loss
mcurred by taking the value of &d(0) to be & . It should be
noted that we are restricting consideration hereto
loss functions which depend on 6 through &(6)
only. If W(6) is the prior density of 6 then according
to Bayes’ theorem the posterior density of 0 13
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18/x) v (8)/p(x) where 1(0/x) 1s the likelihood function of 6
given the sample x and:

p(x) = [1(8/x) w(EHd6

It follows that for a given x, the expected loss 1.e.,
risk of the estimator & is:

R{B(x),0(0)} = [L{B(x).0(0)]
1O/x) wi®) 44
plx)

Assuming the existence of Eq. 2 and the sufficient
regularity conditions prevail to permit differentiation
under the integral sign, the optimum estimator g(x) of ©(6)
will be a solution of the equation:
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The validity of Eq. 3 and the desirability that it
should lead to a unique solution necessarily impose
restrictions of one’s choice of loss function and prior
density of 6. The loss functions which have been
considered here are as follow:

L, (é,e) —o(0-0Y
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L.(80)- Oif‘676‘<8
Al 1 otherwise

Where & 1sa small known quantity:

0if 8, <6-0<3,
1if6-6<8,
1if6-6>3,

Lﬁ(é,e):

Where 8, and &, are 2 known quantities.
MATERIALS AND METHODS

Bayesian estimation of parameter 0 of GGSD under
different priors: The likelihood function from Eq. 1 is
obtained as:
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When [} is known, the part of the likelihood function
which 1s relevant to Bayesian inference on the unknown
parameter 0 18 o7 (107

Bayesian estimation of parameter 6 of GGSD under non-
informative prior: We assume prior of 0 as:

1 0=0<1 (5)

8(6)=

The posterior distribution of 6 from Eq 4. and 5 is:
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The Bayes estimator of parametric function ¢(6)
under squared error loss function is the posterior mean
which is given as:

o(6)8" (1-6)" ¢ dg
B(y.n+By-y+1)

If we take (p(0) = 0, the Bayes estimate of 6 is given
by:
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This coincides with the moment and ML estimate

of 0.

Bayesian estimation of parameter 0 of GGSD under beta
prior: The more general Bayes estimator of 8 can be
obtained by assuming the beta distribution as prior
information of 8. Thus:

ea—l (1 _ e)b—l

a,b>0, 0<B<«l (8)
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The posterior distribution of 8 is defined as:

ea+y—1 (1 _ e)n+(|3—1)y+b—1

T[(B/y) =T

ey+a—1 1-6 n+P-Dy+b-1 do
! (1-6) ©

ea+y—1 (l _ e)n+(ﬁ—1)y+b—1
B B(y+a,n+fy-y+b)

The Bayes estimator of parametric function $(0)
under squared error loss function is the posterior mean
and 1s given as:
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If we take (6) = O then Bayes estimator of 8 is given
as:

* 1 0ty n +(B-1)y +h -1
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Ifa=b=0, Eq 11 coincides with Eq. 7. We can
consider the more generalized prior as:

L(é,e) =00 — Y (12)
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Where ¢ is a positive constant, a and b are known
quantities. Under the above loss function, the Bayes’
estimator @ is given by:

E.(6° |x)
Where:

Ee(ea|x)_jeap(e|x)de
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Using Eq. 11, 13 and 14 the Bayes’ estimator 8 under
the loss function Eq. 12 is given by:

5o D(y+tat+b)l(n+PBy+a+l) "

_ 15)
T(y+a)T(n+Py+a+tb+l)

*  Substituting a = O and b = 1, the loss function Eq. 12
becomes the loss function L, and the Bayes’
estimator under the loss function L., using Eq. 15 is:

8- Y
n+Py+l

Which is the mean of the posterior distribution:

¢  Substituting a = -2 and b =1, the loss function
Eq. 12 becomes the loss function 1., and the Bayes’
estimator under the loss function 1., using Eq. 15 is
(Table 1):
R
n+fy-1
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Table 1:

Shows the seven different loss functions and the respective Bayes®

estimators of © under these loss functions

Loss function

Bayes’ estimator of the parameter

Ll(é,e):c(éfe)2

I
n+py+1

6, -—Y 2
n+py-1

- F(y+1/2)1"(n+[5y+1) :
93‘{ I(y)T{n + Py +3/2) }

Vo ~ [ riy-v2)r{n+py) [
L4(8,8): © Iy -DI(n+By +1/2)
- 0if |B-0/<3 = y-l
L5(B,e)={1 otherwise BSinJrﬁyill

Where & is a small known quantity:

0ifd <B-0<8,
8 a 2 - 3 +8
Lﬁ(e,e): 1if8-0<8, -l Bt
~ n+Py-1 2
1i0-0>8,

Where &, and &, are 2 known quantities

»  Substituting a=0and b =1.2, the loss function Eq. 12
becomes the loss function L, and the Bayes’
estimator under the loss function 1., using Eq. 15 is:

~Ir
ea{

»  Substituting a=0and b =1.2, the loss function Eq. 12
becomes the loss function 1, and the Bayes’
estimator under the loss function 1., using Eq. 15 is:

(y+1/2)1"(n+By+l):|2
D(y)l{n+Py+3/2)

" {Fr(y_”z)r(ﬁﬁy) j

(y-1)T(n+py+1/2

¢+ The Bayes’ estimator for the zero-one type of loss
function L. under is the mode of the posterior
distribution as:
g, =31

7n+By71

»  The Bayes” estimator for the special zero-one type of
loss function L, 1s:
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y-1

3, +8,
= +
n+py -1
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RESULTS AND DISCUSSION

As &, = -0 the Bayes’ estimators 6, and & are
identical. It has been also noted that as P =1, the above
estimators are the Bayesian estimators of the

parameter of simple geometric distribution under the
above loss functions L,, L, L, L, L, and L,

respectively.
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