Journal of Modern Mathematics and Statistics 4 (3): 105-108, 2010

ISSN: 1994-5388

© Medwell Journals, 2010

# On Bayesian Estimation in Generalized Geometric Series Distribution

## Khurshid Ahmad Mir

Department of Statistics, Government Degree College Bemina Srinagar, Kashmir India

**Abstract:** In this study, a Bayesian analysis of Generalized Geometric Series Distribution (GGSD) under different types of loss functions have been studied.

Key words: Squared error loss function, Bayes estimator, beta distribution, GGSD, binomial distribution, India

### INTRODUCTION

The probability function of Generalized Geometric Series Distribution (GGSD) was given by Mishra (1982) by using the results of the lattice path analysis as:

$$P(X = x) = \frac{1}{1 + \beta x} {1 + \beta x \choose x} \theta^{x} (1 - \theta)^{1 + \beta x - x}$$

$$x = 0, 1, 2, \dots 0 < \theta < 1 \text{ and } |\theta \beta| < 1$$
(1)

It can be seen that at  $\beta$  = 1, Eq. 1 reduced to simple geometric distribution and is a particular case of Jain and Consul (1971)'s generalized negative binomial distribution in the same way as the geometric distribution is a particular case of the negative binomial distribution.

The various properties and estimation of Eq. 1 have been discussed by Mishra (1982), Mishra and Singh (1992). Hassan *et al.* (2007) discussed the Bayesian analysis under non-informative and conjugate priors. In this study, the Bayesian analysis of Generalized Geometric Series Distribution (GGSD) under different symmetric loss functions have been studied.

**Preliminary theory:** Let x be a random variable whose distribution depends on r parameters  $\theta_1, \theta_2, ... \theta_r$  and let  $\Omega$  denotes the parameter space of possible values of  $\theta$ . For the general problem of estimating some specified real-valued function  $\varphi(\theta)$  of the unknown parameters  $\theta$  from the results of a random sample of n observations, we shall assume that  $\varphi(\theta)$  is defined for all  $\theta$  in  $\Omega$ .

Let  $x_1, x_2,... x_n$  be the sample observations. Also, let  $\theta$  be an estimate of  $\phi(\theta)$  and let  $L(\bar{\theta}, \phi)$  be the loss incurred by taking the value of  $\phi(\theta)$  to be  $\bar{\theta}$ . It should be noted that we are restricting consideration hereto loss functions which depend on  $\theta$  through  $\phi(\theta)$  only. If  $\Psi(\theta)$  is the prior density of  $\theta$  then according to Bayes' theorem the posterior density of  $\theta$  is

 $l(\theta/x) \psi(\theta)/p(x)$  where  $l(\theta/x)$  is the likelihood function of  $\theta$  given the sample x and:

$$p(x) = \int\limits_{\Omega} l(\theta/x) \; \psi(\theta) d\theta$$

It follows that for a given x, the expected loss i.e., risk of the estimator  $\hat{\theta}$  is:

$$R\left\{\widehat{\theta}(x), \phi(\theta)\right\} = \int L\left\{\widehat{\theta}(x), \phi(\theta)\right\} \frac{l(\theta/x) \psi(\theta)}{p(x)} d\theta$$
(2)

Assuming the existence of Eq. 2 and the sufficient regularity conditions prevail to permit differentiation under the integral sign, the optimum estimator  $\hat{\theta}(x)$  of  $\Phi(\theta)$  will be a solution of the equation:

$$\int \frac{\delta L}{\delta \theta} l(\theta/x) \ \psi(\theta) d\theta = 0 \tag{3}$$

The validity of Eq. 3 and the desirability that it should lead to a unique solution necessarily impose restrictions of one's choice of loss function and prior density of  $\theta$ . The loss functions which have been considered here are as follow:

$$L_1(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}) = c(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^2$$

$$L_{2}\left(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}\right) = \mathbf{c} \left[ \frac{\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}}{\boldsymbol{\theta}} \right]^{2}$$

$$L_{3}(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}) = \mathbf{c} \left( \sqrt{\widehat{\boldsymbol{\theta}}} - \sqrt{\boldsymbol{\theta}} \right)^{2}$$

$$L_4\left(\widehat{\theta}, \theta\right) = \frac{c\left(\sqrt{\widehat{\theta}} - \sqrt{\theta}\right)^2}{\theta}$$

J. Modern Mathe. Stat., 4 (3): 105-108, 2010

$$L_{5}(\widehat{\theta}, \theta) = \begin{cases} 0 \text{ if } |\widehat{\theta} - \theta| < \delta \\ 1 \text{ otherwise} \end{cases}$$

Where  $\delta$  is a small known quantity:

$$L_{6}(\widehat{\theta}, \theta) = \begin{cases} 0 \text{ if } \delta_{1} < \widehat{\theta} - \theta < \delta_{2} \\ 1 \text{ if } \widehat{\theta} - \theta < \delta_{1} \\ 1 \text{ if } \widehat{\theta} - \theta > \delta_{2} \end{cases}$$

Where  $\delta_1$  and  $\delta_2$  are 2 known quantities.

## MATERIALS AND METHODS

Bayesian estimation of parameter  $\theta$  of GGSD under different priors: The likelihood function from Eq. 1 is obtained as:

$$L(x/\theta, \beta) = \prod_{i=1}^{n} \left\{ \frac{1}{1 + \beta x_{i}} \binom{1 + \beta x_{i}}{x_{i}} \right\}$$

$$\theta^{\sum x_{i}} (1 - \theta)^{n + \beta \sum x_{i} - \sum x_{i}}$$

$$= k\theta^{y} (1 - \theta)^{n + \beta y - y}$$
(4)

Where:

$$k = \prod_{i=1}^{n} \frac{1}{1+\beta x_i} \binom{1+\beta x_i}{x_i} \text{ and } y = \sum_{i=1}^{n} x_i$$

When  $\beta$  is known, the part of the likelihood function which is relevant to Bayesian inference on the unknown parameter  $\theta$  is  $\theta^y$  (1-0)^{n+\beta y-y}.

Bayesian estimation of parameter  $\theta$  of GGSD under non-informative prior: We assume prior of  $\theta$  as:

$$g(\theta) = \frac{1}{\theta}, \ 0 < \theta < 1 \tag{5}$$

The posterior distribution of  $\theta$  from Eq 4. and 5 is:

$$\prod (\theta/y) = \frac{L(\underline{x}/\theta, \beta)g(\theta)}{\int_{\Omega} L(\underline{x}/\theta, \beta)g(\theta)d\theta} = \frac{\theta^{y-1}(1-\theta)^{-n+(\beta-1)y}}{B(y, n+\beta y-y+1)} (6)$$

$$0 < \theta < 1, y > 0$$

The Bayes estimator of parametric function  $\phi(\theta)$  under squared error loss function is the posterior mean which is given as:

$$\hat{\phi}(\theta) = \int_{0}^{1} \frac{\phi(\theta)\theta^{y-1}(1-\theta)^{n+(\beta-1)y}d\theta}{B(y,n+\beta y-y+1)}$$

If we take  $\phi(\theta) = 0$ , the Bayes estimate of  $\theta$  is given by:

$$\begin{split} \hat{\theta} &= \int_{0}^{1} \frac{\theta^{y} \left(1 - \theta\right)^{n + (\beta - 1)y} d\theta}{B\left(y, n + \beta y - y + 1\right)} \\ &= \frac{B\left(y + 1, n + \beta y - y + 1\right)}{B\left(y, n + \beta y - y + 1\right)} \\ &= \frac{y}{n + \beta y} \end{split} \tag{7}$$

This coincides with the moment and ML estimate of  $\theta$ .

Bayesian estimation of parameter  $\theta$  of GGSD under beta prior: The more general Bayes estimator of  $\theta$  can be obtained by assuming the beta distribution as prior information of  $\theta$ . Thus:

$$g(\theta;a,b) = \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)} \quad a,b>0, \ 0<\theta<1 \eqno(8)$$

The posterior distribution of  $\theta$  is defined as:

$$\pi(\theta/y) = \frac{\theta^{a+y-1}(1-\theta)^{n+(\beta-1)y+b-1}}{\int_{0}^{1} \theta^{y+a-1}(1-\theta)^{n+(\beta-1)y+b-1} d\theta}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{n+(\beta-1)y+b-1}}{B(y+a,n+\beta y-y+b)}$$
(9)

The Bayes estimator of parametric function  $\phi(\theta)$  under squared error loss function is the posterior mean and is given as:

$$\stackrel{*}{\theta} = \int_{0}^{1} \frac{\phi(\theta) \theta^{a+y-1} (1-\theta)^{n+(\beta-1)y+b-1} d\theta}{B(y+a,n+\beta y-y+b)}$$
(10)

If we take  $\phi(\theta) = 0$  then Bayes estimator of  $\theta$  is given as:

$$\begin{split} & \stackrel{*}{\theta} = \int\limits_{0}^{1} \frac{\theta^{a+y} (1-\theta)^{n+(\beta-1)y+b-1} d\theta}{B \left(y+a,n+\beta y-y+b\right)} \\ & = \frac{a+y}{n+a+b+\beta y} \end{split} \tag{11}$$

If a = b = 0, Eq. 11 coincides with Eq. 7. We can consider the more generalized prior as:

$$L(\widehat{\theta}, \theta) = c\theta^{a}(\widehat{\theta}^{b} - \theta^{b})^{2}$$
 (12)

Where c is a positive constant, a and b are known quantities. Under the above loss function, the Bayes' estimator  $\hat{\theta}$  is given by:

$$\widehat{\boldsymbol{\theta}} = \!\! \left\lceil \frac{E_{\boldsymbol{\theta}}\!\left(\boldsymbol{\theta}^{\mathtt{a}+\mathtt{b}} \mid \boldsymbol{x}\right)}{E_{\boldsymbol{\theta}}\!\left(\boldsymbol{\theta}^{\mathtt{a}} \mid \boldsymbol{x}\right)} \right\rceil^{\!1/\mathtt{b}}$$

Where:

$$E_{\theta}(\theta^{a} \mid x) = \int_{0}^{1} \theta^{a} P(\theta \mid x) d\theta$$

$$=\frac{1}{\beta(y,n+\beta y-y+1)}\int\limits_0^1\theta^{y+a-1}\left(1-\theta\right)^{n+\beta y-y}d\theta$$

$$=\frac{\Gamma\big(y+a\big)\Gamma\big(n+\beta y+1\big)}{\Gamma\big(y\big)\Gamma\big(n+\beta y+a+1\big)} \tag{13}$$

and:

$$\boldsymbol{E}_{\boldsymbol{\theta}}\!\left(\boldsymbol{\theta}^{a+b} \mid \boldsymbol{x}\right) \!=\! \int\limits_{\boldsymbol{\alpha}}^{1} \!\boldsymbol{\theta}^{a+b} \boldsymbol{P}\!\left(\boldsymbol{\theta} \mid \boldsymbol{x}\right) \! d\boldsymbol{\theta}$$

$$=\frac{1}{\beta(y,n+\beta y-y+1)}\int\limits_{0}^{1}\theta^{y+a+b-1}\left(1-\theta\right)^{n+\beta y-y}d\theta$$

$$=\frac{\Gamma\big(y+a+b\big)\Gamma\big(n+\beta y+1\big)}{\Gamma\big(y\big)\Gamma\big(n+\beta y+a+b+1\big)}\tag{14}$$

Using Eq. 11, 13 and 14 the Bayes' estimator  $\hat{\theta}$  under the loss function Eq. 12 is given by:

$$\widehat{\theta} = \left\lceil \frac{\Gamma(y+a+b)\Gamma(n+\beta y+a+1)}{\Gamma(y+a)\Gamma(n+\beta y+a+b+1)} \right\rceil^{1/b}$$
 (15)

Substituting a = 0 and b = 1, the loss function Eq. 12 becomes the loss function L<sub>1</sub> and the Bayes' estimator under the loss function L<sub>1</sub> using Eq. 15 is:

$$\widehat{\boldsymbol{\theta}}_{_{1}} = \frac{\boldsymbol{y}}{\boldsymbol{n} + \beta \boldsymbol{y} + 1}$$

Which is the mean of the posterior distribution:

 Substituting a = -2 and b = 1, the loss function Eq. 12 becomes the loss function L<sub>2</sub> and the Bayes' estimator under the loss function L<sub>2</sub> using Eq. 15 is (Table 1):

$$\widehat{\theta}_2 = \frac{y-2}{n+\beta y-1}$$

Table 1: Shows the seven different loss functions and the respective Bayes' estimators of θ under these loss functions

| Loss function                                                                                                                                               | Bayes' estimator of the parameter                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L_1(\widehat{\theta}, \theta) = c(\widehat{\theta} - \theta)^2$                                                                                            | $\widehat{\theta}_1 = \frac{y}{n + \beta y + 1}$                                                                                                                                                                                           |
| $L_{2}\left(\widehat{\theta},\theta\right) = c \left[\frac{\widehat{\theta} - \theta}{\theta}\right]^{2}$                                                   | $\widehat{\theta}_2 = \frac{y-2}{n+\beta y-1}$                                                                                                                                                                                             |
| $L_{3}\left(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}\right) = c\left(\sqrt{\widehat{\boldsymbol{\theta}}} - \sqrt{\boldsymbol{\theta}}\right)^{2}$ | $\widehat{\boldsymbol{\theta}}_{3} = \left[ \frac{\Gamma \Big( \mathbf{y} + 1/2 \Big) \Gamma \Big( \mathbf{n} + \beta \mathbf{y} + 1 \Big)}{\Gamma \Big( \mathbf{y} \Big) \Gamma \Big( \mathbf{n} + \beta \mathbf{y} + 3/2 \Big)} \right]$ |
| ر آھی۔<br>''                                                                                                                                                | $ = \left[ \Gamma(v-1/2)\Gamma(n+\beta v) \right] $                                                                                                                                                                                        |

$$L_{4}\left(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}\right) = \frac{c\left(\sqrt{\widehat{\boldsymbol{\theta}}} - \sqrt{\boldsymbol{\theta}}\right)^{2}}{\boldsymbol{\theta}} \qquad \qquad \widehat{\boldsymbol{\theta}}_{4} = \left[\frac{\Gamma\left(y - 1/2\right)\Gamma\left(n + \beta y\right)}{\Gamma\left(y - 1\right)\Gamma\left(n + \beta y + 1/2\right)}\right]^{2}$$

$$\mathbf{L}_{5}\left(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}\right) = \begin{cases} 0 \text{ if } \left|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right| < \delta \\ 1 \text{ otherwise} \end{cases} \qquad \widehat{\boldsymbol{\theta}}_{5} = \frac{y-1}{n+\beta y-1}.$$

Where  $\delta$  is a small known quantity:

$$\mathbf{L}_{6}\left(\widehat{\boldsymbol{\theta}},\boldsymbol{\theta}\right) = \begin{cases} \mathbf{0} \text{ if } \delta_{1} < \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} < \delta_{2} \\ \mathbf{1} \text{ if } \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} < \delta_{1} \\ \mathbf{1} \text{ if } \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} > \delta_{2} \end{cases} \qquad \qquad \widehat{\boldsymbol{\theta}}_{6} = \frac{y-1}{n+\beta y-1} + \frac{\delta_{1} + \delta_{2}}{2}$$

Where  $\delta_1$  and  $\delta_2$  are 2 known quantities

Substituting a = 0 and b = 1.2, the loss function Eq. 12 becomes the loss function L<sub>3</sub> and the Bayes' estimator under the loss function L<sub>3</sub> using Eq. 15 is:

$$\widehat{\boldsymbol{\theta}}_{3} = \left[ \frac{\Gamma(y+1/2)\Gamma(n+\beta y+1)}{\Gamma(y)\Gamma(n+\beta y+3/2)} \right]^{2}$$

Substituting a = 0 and b = 1.2, the loss function Eq. 12 becomes the loss function L<sub>4</sub> and the Bayes' estimator under the loss function L<sub>4</sub> using Eq. 15 is:

$$\widehat{\boldsymbol{\theta}}_{4} = \left\lceil \frac{\Gamma\big(y - 1/2\big)\Gamma\big(n + \beta y\big)}{\Gamma\big(y - 1\big)\Gamma\big(n + \beta y + 1/2\big)} \right\rceil^{2}$$

 The Bayes' estimator for the zero-one type of loss function L<sub>5</sub> under is the mode of the posterior distribution as:

$$\widehat{\theta}_{5} = \frac{y-1}{n+\beta y-1}$$

 The Bayes' estimator for the special zero-one type of loss function L<sub>6</sub> is: J. Modern Mathe. Stat., 4 (3): 105-108, 2010

$$\widehat{\theta}_6 = \frac{y-1}{n+\beta y-1} + \frac{\delta_1 + \delta_2}{2}$$

## RESULTS AND DISCUSSION

As  $\delta_1 = -\delta_1$  the Bayes' estimators  $\hat{\theta}_6$  and  $\hat{\theta}_5$  are identical. It has been also noted that as  $\beta = 1$ , the above estimators are the Bayesian estimators of the parameter of simple geometric distribution under the above loss functions  $L_1$ ,  $L_2$ ,  $L_3$ ,  $L_4$ ,  $L_5$ , and  $L_6$ , respectively.

### REFERENCES

- Hassan, A., K.A. Mir and M. Ahmad, 2007. On bayesian analysis of generalized geometric series distribution under different priors. Pak. J. Statist., 23: 255-260.
- Jain, G.C. and P.C. Consul, 1971. A generalized negative binomial distribution. SIAM J. Applied Math., 21: 501-513.
- Mishra, A. and S.K. Singh, 1992. On a characteristic of the geometric series distribution. J. Bihar Math. Soc., 15: 32-35.
- Mishra, A., 1982. A generalization of geometric series distribution. J. Bihar Math. Soc., 6: 18-22.