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Statistical Theory of Certain Distribution Functions in MHD Turbulent Flow
Undergoing a First Order Reaction in Presence of Dust Particles
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Abstract: In this study, an attempt is made to study the distribution functions for simultaneous velocity,
magnetic, temperature, concentration fields and reaction in MHD turbulent flow undergoing a first order
reaction in presence of dust particles. The transport equations for evolution of distribution functions have been
derived. The various properties of the distribution function have been discussed. Finally, a comparison of the
obtained equation for one-point distribution functions with the first equation of BBGKY hierarchy of equations
and the closure difficulty is to be removed as in the case of ordinary turbulence.
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INTRODUCTION

The kinetic theory of gases and the statistical theory
of fluid mechamnics are the two major and distinet areas of
mvestigations in statistical mechanics. In the past, several
researchers discussed the distribution functions in the
statistical theory of turbulence. Tundgren (1967) derived
a hierarchy of coupled equations for multi-point
turbulence velocity distribution functions which resemble
with BBGKY hierarchy of equations of Wu (1966) in the
kinetic theory of gasses. Kishore (1978) studied the
distributions functions 1n the statistical theory of MHD
turbulence of an incompressible fluid. Pope (1981) derived
the transport equation for the joint probability density
function of velocity and scalars in turbulent flow. Kishore
and Singh (1984a) derived the transport equation for the
bivariate joint distribution function of velocity and
temperature m turbulent flow. Also Kishore and Singh
(1984b) have been derived the transport equation for the
joint distribution function of velocity, temperature and
concentration in convective turbulent flow. Dixit and
Upadhyay (1989) considered the distribution functions in
the statistical theory of MHD turbulence of an
mcompressible fluid in the presence of the Coriolis force.
Kollman and Janica (1982) derived the transport equation
for the probability density function of a scalar in turbulent
shear flow and considered a closure model based on
gradient flux model. But at this stage, one 1s met with the
difficulty that the N-point distribution function depends
upen the N+1-pomt distribution function and thus result
is an unclosed system. This so-called closer problem is
encountered in turbulence, Kinetic theory and other
non-linear system. Sarker and Kishore (1991a) discussed
the distribution functions in the statistical theory of
convective MHD turbulence of an incompressible fluid.

Also Sarker and Kishore (1999) studied the distribution
functions in the statistical theory of convective MHD
turbulence of mixture of a miscible incompressible fluid.
Sarker and Tslam (2002) studied the distribution functions
1n the statistical theory of convective MHD turbulence of
an incompressible flud m a rotating system. Islam and
Sarker (2007) also studied distribution functions in the
statistical theory of MHD twbulence for velocity and
concentration undergoing a first order reaction.

In this study, the researchers have studied the
distribution function for simultaneous velocity, magnetic,
temperature, concentration fields and reaction in MHD
turbulence in presence of dust particles. Finally, the
transport equations for evolution of distribution functions
have been derived and various properties of the
distribution function have been discussed. The resulting
one-point equation is compared with the first equation of
BBGKY hierarchy of equations and the closure difficulty
1s to be removed as in the case of ordinary turbulence.

MATERIALS AND METHODS

Basic equations: The equations of motion and continuity
for viscous mcompressible dusty fluid MHD turbulent
flow, the diffusion equations for the temperature and
concentration undergoing a first order chemical reaction
are shown by:
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ot 0%,
with
du, _av, dh, _ (5)
dgx, oOx, Ox,
Where:
1, (%, 1) = g-component of turbulent velocity
h, (x, t) = g-component of magnetic field
0t = Temperature fluctuation
C = Concentration of contammants
v, = Dust particle velocity
R = Constant reaction rate
f=KN/p = Dimension of frequency
N = Constant number of density of the
dust particle
w()},t):£+l|ﬁ‘2 = Total pressure
ptP ¥ = Hydrodynamic pressure
P = Fluid density
v = Kinetic viscosity
A=(4muo)! = Magnetic diffusivity
v = kipe, = Thermal diffusivity
¢, = Specific heat at constant pressure
ket = Thermal conductivity
o = Electrical conductivity
i = Magnetic permeability
D = Diffusive co-efficient for contaminants

The repeated suffices are assumed over the values 1,
2 and 3 and unrepeated suffices may take any of these
values. Here u, h and x are vector quantities in the whole
process. The total pressure w which occurs 1 Eq. 1 may
be eliminated with the help of the equation obtained by
taking the divergence of Eq. 1:

2 d dh
Viw=-— I (umuB fhmhﬁ) =- du,, O - oh,, o
dax, dxy 0%, dx, X,

(6)
In a conducting infinite fluid only the particular
solution of the Eq. 6 is related, so that:
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Hence, Eq. 1-4 becomes:
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gt ox, dmaox, 7| oxy Ox,  Ox; X,
_,7_+VV2ua+f(uufva)
X*X|
(8)
dh a
@+ —({h_u, —uh,)=AVh (9
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Formulation of the problem: The researchers consider the
turbulence and the concentration fields are homogeneous,
the chemical reaction and the local mass transfer have no
effect on the velocity field and the reaction rate and the
diffusivity are constant. They also comsider a large
ensemble of 1dentical fluids in which each member 15 an
infinite incompressible reacting and heat conducting fluid
in turbulent state. The fluid velocity u, Alfven velocity h,
temperature 6 and concentration C are randomly
distributed functions of position and time and satisfy their
field. Different members of ensemble are subjected to
different initial conditions and the aim is to find out a way
by which we can determine the ensemble averages at the
initial time. Certain microscopic properties of conducting
fluids such as total energy, total pressure, stress tensor
which are nothing but ensemble averages at a particular
time can be determined with the help of the bivariate
distribution  functions  (defined as the averaged
distribution functions with the help of Dirac delta-
functions). The present aim to construct the
distribution functions, study its properties and derive an
equation for its evolution of this distribution functions.

18

Distribution function in MHD turbulence and their
properties: Tt may be considered that the fluid velocity u,
Alfven velocity h, temperature 8, concentration C and
constant reaction rate R at each point of the flow field in
MHD turbulence. Lundgren (1967) and Sarker and Kishore
(1991a, b) has studied the flow field on the basis of one
variable character only (namely the fluid u) but we can
study 1t for two or more variable characters as well. The
corresponding to each pomnt of the flow field, we have
four measurable characteristics. We represent the four
variables by v, g, ¢ and | and denote the pairs of these
variables at the points:
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)
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(v“,g“,q)“,\u”)

(V(Z), g(Z): ¢‘(2), w(Z) ): (V(n), g(n), q)(n), w(n))

at a fixed instant of time. Tt is possible that the same pair
may be occur more than once; therefore, we simplify the
problem by an assumption that the distribution is discrete
(in the sense that no pairs occur more than once).
Symbolically we can express the distribution as:

it = Y RN 0] WA (@ F@ 4@ @y,
(77, 8%, 0% W) (79, g9, 07, w®);
(v(n): g(n), q)(n), w(n))

Instead of considering discrete points m the
flow field
of the variables %8¢ and | over the entire flow
field, statistically behavior of the fluid may be
described by the distribution function F(¥.2.0.%) which is
normalized so that:

if we consider the continuous distribution

[F(¥. &, ¢, y)dv, dgdody =1

Where the integration ranges over all the possible
values of v, g, ¢ and . We shall make use of the same
normalization condition for the discrete distributions also.
The distribution functions of the above quantities can be
defined in terms of Dirac Delta-functions.

The one-point distribution function F," (v¥”, g%, ¢,
W) defined so that F,© (v, g, ¢, ) dv®, dg®, de®,
dy™ is the probability that the fluid velocity,
Alfven velocity, temperature and concentration field
at a time t are in the element dv” about v%, dg™
about g®, dd" about ¢ and dg™ about Y, respectively
and is given by:

5(u<1) _y® ) S(h(‘) 7g(1>)
Fn(n(\/(l),g(l),¢m,‘|’®) < (e(m q)(m) (C(‘)ﬂpm) (12)

where & 1s the Dirac delta-function defined as:
J‘a(ﬁ _ v) dv — {1 at the point T=%

0 elsewhers

Two-pomt distribution function 1s given by:

13

o S(u(‘) Y )S(hm _ g(l) ) 5(9(1) _ q)(l) )S(C(” 71“(1) )
T S(U(Z) _y@ )S(h(z) _ g(Z) )8(6(2) _ ¢(2))8(C(2) 7“1(2) )
(13)
and three point distribution function is shown by:
B(u® —v)8(hY - g)5(09 ¢V
i 3(CY —y®)5(u® —v®)3(n —g) 14

(67 0@ )3(CP —y™)3(u — v
3(h —g®)8(67 ¢ )3(C? —y®)
Sirmilarly, we can define an infimite numbers of multi-
point distribution functions F,">** | F,®***%and so0

on. The distribution functions so constructed have the
following properties:

Reduction properties: Integration with respect to pair of

variables at one-point, lowers the order of distribution
function by one. For example:

J' J‘ J‘ J‘ FOdvdg gy = 1
J]'J'J‘F2(1,z)dv(Z)dg(Z)dq)(Z)dw(z) _ Fl(l)
”‘J‘J‘F3(1,z,ajdv(a)dg(a)dq)(a)dw@) SF et

Also the integration with respect to any one of the
variables, reduces the number of Delta-functions from the
distribution function by one as:

J.E“)dv“):@(h“)fg“)) (9(1) ¢(1)) (C“)f\u(”»

J‘Flmdg(l) - <8(u(” - Vm) (em q)m) (cm _wa)))
IE(I)d¢(I) _ <8(u“) G )S(h“) —g® )S(C(‘) —y® )>
And
8(11(1) —_y® )5 (h“) —gh 5(90> — W )
J'Fz(“)dv(z) _ (ca) (1)) (h@) _g(Z)

)
(9(2) ¢(2)) (C(Z)_w(Z))

Separation properties: The pairs of variables at the two
points are statistically independent of each other if these
pomts are far apart from each other in the flow field 1e.,
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and similarly,

: 1,23 1,2 3
L1m|7(3) e EM3D = ERIED ete.

Co-incidence property: When two points coincide in the

flow field, the components at these points should be

(1.2

obviously the same that is F;** ¥ must be zero. Thus:

s 02} B { (2) _ (2) _ (1)
VY=V, gt =gt 0t =0
And
(2) _ 4,0
W =y

but F,*-? must also have the property.
JHIFZO’Z)dv(”dg(z)dq)”)dw(z) -
And hence 1t follows that:

J‘an,z) - Ff‘)ES(vm —y® ) B(gm _gm)

8( ¢(2) _ ¢(1) ) S(wm _ wa) )

LM o)

Similarly:

Lim| s J'F(l L 2)8( @ (1))6(g(3) 7g(1))

5(0% — ) 8(w® —y®) ete.

Symmetric conditions:

Fna,z,r, n) _ F;.EI'Z’

Incompressibility conditions:

(1,2,———n) _
15 oo
aF(l,Z,fffn) _

II nax(r) hg)dv(f)dh(‘):o

Continuity equation in terms of distribution functions:
An mnfinite number of continuity equations can be derived
for the convective MHD turbulent flow and the continuity
equations can be easily expressed in terms of distribution
functions and are obtamned directly by div u = 0. Taking
ensemble average of Eq. 5

14

‘<§“5“3> (e (o)
X
a (1) 1 m‘ IF(‘)dv“)dg“)dq)(‘)dw“)

SN

[I] [+ 0r0 v dg VgV

EV }dv“)dg(”dq)(”dw“) (15)

T XD
aF®
= J‘ J‘ J‘ J‘ . v Odydg Y doPdy
X(l
And similarly;,
(16)

0= _U”gxiii Vv dg® do®dy ™

Which are the first order continuity equations in
which only one point distribution function is involved.
For second-order continuity equations, if we multiply the
continuity equation by:

8(u(2)_v(2))8(h(2)_g(2)) (8(2) q)(Z)) ( [£3) w(Z))

And if we take the ensemble average, we obtain:
S(u(z) -
(8(2) ¢(2) ) (C(ZJ —\,U(z) ) an)
8(11(2) — @ )S(h(z) _g(Z) )
(8(2) ¢(2)) (C(Z) —\p(z))uﬁ)
ul8(u® —v®)8(h? - g®)
(8(1) ¢(1)) (C(l) w(l))
aX(IJ .[ ><8( @ _ (2))5(h(2) gm)
(9(2) ¢(2)) (C(Z) 7\“(2))

v@ )S(h(z) 7g(2))

O]
Jul;

9
- ax®

(17)

= JHJ.V(l)Fz(l’z)dedg(ljdq)“)dwﬂ)
ax; o

and similarly;

H”g(I)FO Z)dv“)dg(”dq)“)dqf“) (18)

ax(l)

The Nth-order continuity equations are:

ax<1> J‘ J‘ J‘ J‘ WRU2-— Wy OdgOdeOdy®  (19)
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axm Iﬂ‘j (1)F(12 ........ N)dv(l)dg(l)dq)(l)d‘p(l) (20)

The continuity equations are symmetric in their arguments i.e.,

a(r) J-J‘”(V(mr)FS,z ............ 10y ©dgOd g dy® )
ox; o

rs, N)dV(S)dg(S)dq)(S)d‘p(S)

Since, the divergence property is an important property and it is easily verified by the use of the property of
distribution function as:

- a@ _U_[IVg)E(l)dv(l)dg(l)dq)(l)dw(l)
XDL

G ud
aX(l) <u()> <ax (1)>

Equations for evolution of distribution functions: The Eq. 8-11 will be used to convert these into a set of equations for
the variation of the distribution function with time.

This, in fact is done by making use of the definitions of the constructed distribution functions, differentiating them
partially with respect to time making some suitable operations on the right hand side of the equation so obtained and
lastly replacing the time derivative of v, h, 6 and C from the Eq. 8-11. Differentiating Eq. 12 and then using Eq. 8-11 we
get:

(22)

agf) %(8(11(1)_V(l))a(h(l)_g(l)) (67 —0®)5 (C“)—\p(”»

_ <8(hm 7g(1)) (9(1) ¢(1)) (C(l) *w(l))gs(um 7V(1)) >+ < 8(11(1) 7V(1)) (9(1) ¢(1)) w S(C(” w(l))%s(h(l) gm)>+

<B(u“) . v“))B(hO) . g“)) (9(1) ¢(1)) (C(l) —y® )>

—<8(h(l)g(l)) (em ¢(1)) (Cmfw(l))a‘ll a()S(ume)>+
at v

O OVE[(a0 g8 by Be
“B{ut? —v)3{6% —o¥ J3(C” —w) = am

ot aq)m

<—8(u(”—v(”)8(h(”—g(”)B(Bm ¢(1))ac 8(1)5 4§
ot oy

( (23)

-y

Vo (1) >
<—8(u(” —y )B(h“) _ g(l) )S(C“) —‘Um ) 98® gu ¢<‘> >
) >

Using Eq. 8-11 in the Eq. 23, we get:

15
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B
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%

R R L R L LU e P CED
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:< g(hﬂ),gﬁm) (6@ ¢(1)) (C(IJ*WO))

(S(h(l)7g(1))6(e(l)7¢(12)5(c(1) wa)): 2

3| ap m@wy| & 9 ?
el o alh 4 0 (e o D) )

ohy®
<_5(h(1) (1)) (0(1) ¢(1))5(C(D _w(l))f(uuﬁl) —_ vuﬁl) )Wal)a(u(l) _ V(l)) >+< S(UED _ V(l)) (9(1) ¢(1)) (C(D _W(l)) a;gu)ﬁ agag‘l)

S(h(l) —_ g(l)) > +

o

® _ 500 — g0 )5V _ y® dughy’ 9 S(hY _ g® ® 3500 — 6OV 5{CD —y® v d 5(h® _ o®
<( )( q’)( “)amag( g))+(( )( q))( W) &agcn( g)>+

< (u(l) vﬂ)) (h(l)_g(l))s(c(l) _w(l)) 1 ge(l) aq?(l) ( pm ¢(1)) > < 8(11(1)_v(l))a(h(l)_g(l))s(c(l) WO))"{V pm aq? (e(l) ¢(1)) )

ac 9
oy

< ( O] V(l)) (h(l)_g(l)) (8(1) 4)(1)) 0] S(C(l)—w(l)) >+< ( m V(l)) (h(l)_g(l)) (8(1) ¢(1))DV C(Daj S(C(D W(1)) >+

0

(_8(11(1)_‘,(1))8(}10)_gm) (em q)m)Rcmaw S(C“) ‘Um)> (24)

Various terms in the Eq. 24 can be simplified as that they may be expressed in terms of one point and two point

distribution functions. The first term on the right hand side of the earlier equation is simplified as follows:

O 0560 60 )5(c ) 2D 5w o O SR _ P50 _ 650 _y® e 0 5o
B(h —g®)8(67 - ¢ )3(C — ) o aVSJS(“ —v)) = {u B(hY -5 )8(6” - " )B(C — )axg‘) av(;)a(“ -v7)

aul 9 3 _ 2)
- <_u(1)B S(h(l) _g(l) )8(9(1) _ q)m )S(C(l) —y () ) ax(l ax(l) B(Um _b )> — <_u(1)B S(h(” _g(l) )5(8(1) _ ¢(1)) (C(l ‘4’1 )axig)ﬁ(u(l) i )>{ Sin cew = IJ

o

— <6(h(1) 7g(1))8(90) 7¢(1))6(C(1) 7\“(1))11[(31)%6(11(1) V(1))> (25)

Similarly, 7th, 10th and 12th terms of right hand side of Eq. 24 can be sumplified as follows:

o8} (1 (1 (1 (1) (1) ahg)ug) 9 o8} (1) 19} (1 193] (1) (1) (0 d o8} (1
et L B L UL CR L GO L U

(26)

10th term,
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<8(u(1) g )S(hm _ gm )S(Cm _ Wm) (bl) 80(1) a(l) 8(9“) -~ ¢(1))> _ <6(u“) _ )B(hm _ g(l)) (C“) III(D) g) aw 6(9“) _ ¢(1) )>
a3 3 oxy

(27)
and 12th term,

<8(u(1) _ V(1))6(h(1) _ g(l))S( g ¢(1)) (1 3;(1) o am S(C(l) _ w(l))> _ <_5(u(1) _ V(l))a(h(l) _ g(l))S(e(l) _ ¢(1)) O] afg) S(C(l) _ IIJ(1))>

(28)
Adding Eq. 25-28, we get:

<6(h“) 7g(”)8(9“) 7¢(1))5(c<1> fq;“’)u“)—S(u“’ b )>+ <8(u(” 7\,(1))5(9(1) 74)“))8((2“) 7w(1))ug> a}i S(h“) (1))>+

d
<5(u(1) —v)8(h® ~g®) §{CO —y®)ul 2 V5D

8(69 - ¢(n)> <8(u(‘3v(‘3)8(h“)g“3) (6 —6")u maj

B

8(co <0)>

_ajg) (u(1)5<75(u(1) ,Vil))é}(h(n *g(l)) 8(8(‘) _ ¢(1))5(C(1) *‘Um)> aam Vg)Fl(”

Using the properties of distribution functions:

oF®
v 5 (29)
s

Similarly 2nd and 8th terms on the right hand side of the Eq. 24 can be simplified as:

ah(l)h(l) a a [15) J
_8(hO — o ®\8{a0 — g0 8 M _ gy} e W _y®)) = g % O 30
<8(h gV 18(6” -9 5(C” —y®) o av(nS(u ")) = pD axénFl (30)
and
001850 _ g0 50 _yo) Mahe 9 gia o (1)3 L 9 (31)
—B{u v )36~} 3V —y”) xD g, &(h )] =78 g axg)Fl

Fourth term can be reduced as:

<—vV2qu> 5(h — g)3(6% — 6)5(C )aj - B(u )= - a\i‘) <V2u(1) [5(11(1) —v)(h® - g )8(8® - ¢V)3(c w(l))D

o

_ d az n 8 n ) 5 h(l) ) 8(1) (1) 19} n _ d H az
= 50 g (B B 86 6 JR(C Y vt

d o’
<ug)[5(u(1),vo))g(ha>,gm) (8“) ¢(l)) (Cm,wmm_ Vav(” Lim,, P <_|._|._|._|.uf)5(u(2)*"(2))
S(h@ _g<2))8(e<2)_¢<2))8(C<2)_w(a)xa(um —v(”)a(h(‘)—g(”) (9(1) ¢(n) (C@—qf(‘))dv@dg@dq)@dw(z)

- d Y Lim 872 m‘ Iv(z)F("Z)dv(z)dg(Zjdq)(z)dw@ (32)
a (1) Z(2) —(l) a éz)aXéz) o 2
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Sth, 11th and 13th terms of the right hand side of Eq. 24:

d d d
<_8(u(1)_v(1)) (8(1) ¢(1)) (Ca) (1))kvzh(1) ag S(h(l) g(l))> < szh“’ ag (u(l) v(l)) (e(l)_¢(1))8(c(1) W(1))(‘3!%()8(1.1(1) g(1))>

o o o

d
= 8 T —— LM ” (2)8 (2) J.J.J.J.g(sz(l Dy @dg® do® dy (33)

<_5(u<1> —v)E(RY - g §(CY -y e s 5(6" — ¢ )> - <—YV29(1)5(11(1) — )R - g ) §(C —y® )%5(90) "y )>

(2(12) 3,020 1,020 1.4(2) (2)
¢(1) Mo - o (z)a (2)_[¢' o dvdg ™ do dyr 34

<—8(u(1) —v")3(n® - g®) 5(6Y - 6\ DV C(l)aj 3(c? - 111(1))> =<—DV2C®8(u® ~v¥)3(n® - g®)3(c® _wn)%a(e(n _¢<1))>

d
Dt o 6

Now, we reduce the 3rd term of right hand side of Eq. 24:

x‘ ov!)

au(l) au(l) ah(l) ah(l) d)_i’ ]
0 _o0)8( 60 — gD V8 00—y a O 0 _
<8(h g)8(6% -0 )3(C" —w )475 x0 J-{ © axm X0 o0 o S(u® —v?)

9 1 9 ( 1 aV(Z) av[(;) a (2) ag(Z) (L2 15 @ 3w 8 Ao 18 Ay ™ et
= - o : 36
v 4m ,”,”.I.axg) L‘i(zj 72(1)‘ {axéz) x® axéz) o E2dx"dvdg - dg" dyr (36)
6th term of right hand side of Eq. 24:

<5(h(l)—g(l)) (0(1) ¢(1)) (C(D_W(l)) (u(l) Vu))av (u(l) v(lj)> < (U(U VS))Q‘?(D[ (u(l) v(l)) (h(l) (1)) (e(l) ¢(1))5(C(1)_w(1)ﬂ>

o

— f(u? _Vg))%g)(g( u® — v )8 (n® - g )5( 8% - ¢ )3(C® —\IJ(”)> ——f(u® —v0) a\?ﬁ) o (37)
And, the last term of the Eq. 24 reduces to:
<—8(u“) _ V(l))a(h(l) _gm) (9(1) ¢(1)) RCW ali S(C(” ‘Ifm)> — —R‘Um » am Fl(l) (38)

Substituting the results 25-38 in Eq. 24, we get the transport equation for cne point distribution function F,* (v, g,
¢, U) in MHD turbulence for concentration undergoing a first order reaction in a rotating system in presence of dust
particles as:

I IR nf 0gy  ovy |OR” l d l VD VY 98D B85 |1 (4D DD
X TV aX(EnJrg v (1)+a ® axm av(‘) E”-I.”ax“) ‘i@fiﬂ < axég) ax@) ax@a (2) - dxt dvt gt d g dyt |+
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9 ; J* @OE0D) 4@ 10 440D a @O0 4@ 10 @ AR Ayt
Vo Gl PMCENE [[] [v@E 2 dv@dg do gy P " axma 7 o [[[ [ F P v @ dg P dg Py +
_a i DD 34D 46 AnE gy (2 01.2) 3,62 3, (2) 3462 1. (2)
Yaq)(l) Lim —cz) ol ax(z)a (2) IIII¢ B dvdg ™ de ™ dye +DWL o m@ﬂ”‘ﬂ EVdvidg de dy +
Flu® _ 9 o v 9 o (39)

(ug = v; )8 o TRy o gk =0
v aw

Similarly, an equation for two-point distribution function F,"? in MHD dusty fluid turbulence for concentration

undergoing a first order reaction can be derived by differentiating Eq. 13 and using Eq. 2, 3, 4, 8 and simplifying in the
same manner which 1s:

FE Lo @ 9 an, w98y A3 an, o d8n Ty @ |1 d 1
x| 8xé"+v5 a7 E+g av<1>+@ axg>F§ te 8v‘2)+8 @ ameé T v E”J.”@ W ”

©] ©] ) @
av(j> BVB g (3) Bg (123)dx”)dvmdg(”dq)mdwj) m‘H ( avg) avﬁ - ag(cf) agﬁ .
ang) aXS) ax(a) aX(BJ (2) AT (z;L ™ (2)‘

3) @) 3) 3)
o0 ox?  ax) axC

F3("2’”dx(a)dv(”dg(”dq)(”dw”}rv[ 9 _Lim

0 (3) (123 3v 3 30 3 A3 (3)
aVO) @ 70 + — av(zj —_Lim _(3;_>_(2)Ja (BJBX(B) J-J-J-J- F dv dg dq) d\u +

J . d d J .
){@ Lim_,, o+ = % (2) M JBX“B 5 H”g(aJF(l 294y D dgDd dy™ + Y{W M, +WLHH§(3’—>§“’ }+

d .. 9’
aX(B)aX(3) III,HJG)F(I ’ B)dvo)dg(a)dd)@dw(a) + D[ aw(l) —(33%%13 + aw@) lei@)%gu) JaX(B)aXG) IIIIW(3)F§1’2’3)dv(3)dg(3)d¢(3)dw(3) +
B B

9 9
m_ 0 L2y _ (0 ) _
fluf —v§ )av(”F Ry EY =0

<3

(40)
Continuing this way, we can derive the equations for evolution of F,**®, F," **% and so on. Logically, it is possible

to have an equation for every F, (n 15 an mnteger) but the system of equations so obtained is not closed. It seems that
certain approximations will be required thus obtained.

RESULTS AND DISCUSSION

If the fluid is clean then f= 0, the transport equation for one point distribution function in MHD turbulent flow
Eq. 39 becomes:

aFl( b W aFl( b

% ovl \ar? 1 G 1 2 oovy’  9gd ag
o 92 1 A FOD 4 D dv@de Do duy®
o P D [av(;”a O Joxd (;) pra 1] a0 [} 50 || o ox? o o Ej> ER e A

d J
8 0 oy LM e o o <2>ax<2> ”‘” VIR dy Pdg @ g dyr +ka o Lim g o axma (2) J‘J‘”g(z)Fa Dy @dg®dpPdy® +
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d LHIL(:;_)_m = (2)8 (2) IIJ.I¢(2)F(1 2)dv(2)dg(2)d¢(2)dw(2) +D—

aq)(l) aw(l)

L]Il'l_u,_) o = (2)8 (2) Iffjw(2)F(1 nd\fﬁ)dga)d(])(z)dl]](z) Rw(l)

(41)

Which was obtained earlier by Sarker and Islam (2002). We can exhibit an analogy of this equation with the first
equation in BBGKY hierarchy in the kinetic theory of gases. The first equation of BBGKY hierarchy is shown as:

aF’ 1
at

(1) (1) _
ax(l) F

Where w,, =y[vZ

uff

oy, , 9E-Y

ax O] av(l) (42)

dg(Z)dv(Z)

-vJ| 1s the inter molecular potential. If we drop the viscous, magnetic and thermal diffusive,

concentration terms and constant reaction terms from the one point evolution Eq. 41, we have:

(1)
9
L+

(2 (2 ) (2
& sl ey

ot

n m
@B of
¥ 3m @

s P

w8
*3 W Jax(u Yo

=M B A
The existence of the term:

dgy

)
v,

[4)]
av,
ag(l)

can be explained on the basis that two characteristics of
the flow field are related to each other and describe the
interaction between the two modes (velocity and
magnetic) at a single point x™.

In order to close the system of equations for the
distribution functions, some approximations are required.
If we consider the collection of ionized particles i.e., in
plasma turbulence case, it can be provided closure form
easily by decomposing F,* * as F,*” F,. But such type of
approximations can be possible if there 1s no mteraction
or correlation between two particles. If we decompose
F,9 as:

E09 = (1+¢) Y E®

1::3 (L3 - (1""8 )2 1:‘1(1) 1:‘1(2) F1(3)

Where € 15 the correlation coefficient between the
particles. If there is no correlation between the particles,
€ will be zero and distribution function can be
decomposed in usual way. Here, we are considering such
type of approximation only to provide closed from of the
equation i.e., to approximate two-point equation as one
point equation.

The transport equation for distribution function of
velocity, magnetic, temperature, concentration and
reaction have been shown here to provide an
advantageous basis for modeling the turbulent flows in
presence of dust particles. Here, we have made an attempt
for the modeling of various terms such as fluctuating
pressure, viscosity and diffusivity m order to close the

{;—nm 1 a%y{g@ = H
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(2] 2]
&7 o

_ H 2D e e @ dg@dy® (=0 (43)
@0 |
a7 B’ }

equation for distribution function of velocity, magnetic,
temperature, concentration and reaction. It is also
possible to construct such type of distribution functions

i variable demnsity follows. The advantage of
constructing such type hierarchy is to provide
simultaneous information about velocity, magnetic
temperature, concentration and reaction without

knowledge of scale of turbulence.
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