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Abstract: In this study, we establish some sufficient conditions for the oscillation of all the solutions of the
non-autonomous neutral impulsive differential equation with several delays
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where, t, t,>t,. The study was carried out under the assumption that for sufficiently large t, the coefficients of
the equation satisfy the conditions

%(Pj(t)+pj(tk))gl and sup {ZN:(ql(s)-s- qlk):s>t}>0

i=1 1gkeew | 1
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INTRODUCTION
The problem of oscillatory and asymptotic
behaviours of solutions of neutral impulsive differential
equations of the first order is of both theoretical and
practical importance (Bainov and Simeonov, 1995,
Berezansky and Braverman, 2003; Candan and Dahiya,
2005; Jankowski, 2007). One of the major reasons may be
due to the fact that equations of this type abound in
networks containing lossless transmission lines. Such
networks are found in high speed computers where,
lossless transmission lines are used to mterconnect
switching circuits. We must also acknowledge the role of
such equations in the motion of radiating electrons,
population growth, the spread of epidemics, to mention
just a few (Gyori and Ladas, 1991).
The aim of tlus study 3 to obtain sufficient
conditions which depend only on the coefficients and
delays for the oscillation of all solutions of equation of

the form:

+ZN:q1(t)x(t—Gl(t)): 0, t#t,
(1.1)

1=1

/_{X(tk)— Ziﬂ:pj (tk)x(tk -t (tk))}
+§;q1kx(tk ~a,(t,)}=0,

where, t, t,=t;.

The advantage of working with these conditions
rather than with the characteristic equation of the neutral
impulsive equation under consideration is that they are
explicit and are therefore easily verifiable, while the
determination of whether or not a real root to the
characteristic equation exists may be quite a problem
itself.

As 18 customary, a solution x of an mpulsive
differential equation 1s said to be:
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+  Finally positive, if there exists T=0 such that x(t) is
defined for t=T and x(t)>0 for all t=T

*  Finally negative, if there exists T>0 such that x(t) 1s
defined for t=T and x(t) for all t=T

*  Non-oscillatory, if it 1s either finally positive or finally
negative

*  Oscillatory, if it 18 neither finally positive nor finally
negative

¢ Regular, if it is defined in some half line (T, <)
for some T,cR and sup{x(t): t=T|}=0, ¥T>T,
(Lakshmikantham et al., 1989)

Usually, the solution x(t) for te(t,, T) of the impulsive
differential equation or its first derivative x'(t) is a
plece-wise continuous function with points of
discontinuity t,e(t,, T), t, # t Therefore, in order to
simplify the statements of our assertions later, we
mtreduce the set of functions PC and PC', wluch are
defined as follows:

LetreN, D := (T, «) c Rand let S := {t.}, ., where, E
represents a subscript set, which can be the set of natural
mumbers N or the set of integers 7, be fixed. Throughout
the discussion, we will assume that the sequence {t.},
are moments of impulse effect and satisfy the properties:

C1.1: If {t.}.s 15 defined with E: = N, then O<t,<t, <.
and 1(liglmtk =40,

C1.2: If {t.}, ¢ 1s defined with E: = 7, then t,<0<t,, t,<t,_,
for all keZ, k#0 and Jim t, =+

We denote by PC (D, R) the set of all functions ¢:
D—R, which is continuous for all t2D, t&S. They are
continuous from the left and have discontimuty of the
first kind at the points for which t=S.

By Pcf (D, R), we denote the set of functions ¢: D—R
having derivative dg/dtcPC(D, R), O<j<r (Bainov and
Simeonov, 1998; Lakshmikantham et al., 1989).

To specify the points of discontinuity of functions
belonging to PC or PC', we shall sometimes use the
symbols PC(D, R; S) and PC(D, R; 3), reN.

In the sequel, all functional mequalities that we
write are assumed to hold finally that 1s, for all sufficiently
large t.

Statement of the problem: The following results, which
are essential in the proofs of the theorems have been
extracted from studies by Bainov and Simeonov (1998)
and Gyori and Ladas (1991).

Lemma 2.1: Let ac(-<, 0), T€(0, ), t,;€R and suppose the
function x£C ((t;-T, =), R) satisfies the inequality:

74

x(t)<a+ max x(s) fort=t, (2.1)

t-tZest

Then, x cannot be a non-negative function. Consider
the impulsive differential equation:

X (t)+ Zn:plx(t -1)=0,tes
= 22)

Ax(t, )+ iplnx(tk -1)=0, Vt, €8,
1=1

where, 1,20, p., pp € R, 12icn.

Theorem 2.1: Assume that T, p, pp20 for 1 <i<n. Then, the
condition

n

Z(p1 + p1D)T1 > 671

1=1

is sufficient for the oscillation of all the solutions of
Eq 2.2.

Now consider the impulsive delay differential
equation

n

X(t)+ > q (t)x(t-7 (t))=0, tes

= (2.3)
Ax(t, )+ qukx(tk -t )) =0, Vvt 5
i=1
and the impulsive delay mequalities
y(t)+ > p(thy(t-7(t))<0, tes
=1 (2.4
Ay(t )+ Zplky(tk -1 (tk)) <0, vt €8
1=1
and
Z{t)+ 3 rl(t)z(tf’:i(t))zo, tes
=1 (2.5

We introduce the condition:

cgq [P 4 TEPC(RLR,), 1 eC(R,R,).i=1 2.0
Py, Gy 5 20, keN,i=1, 2, n.

Let, t;20. The imtial mnterval associated with the
above equation and inequalities 1s interval (t,, t;), where,
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t, = (2.6)

1ZiZn

=min
tzty

mf{t T, (t)}}

Theorem 2.2: Let condition C2.1 be fulfilled. Suppose
further that:

2.2 {Pi(t)zq(tp (t) vteR,_,i=12,,n
Pu 2 Qg 20 ke N, i=1, 2,-

Assume that x, y and z are solutions of Eq. 2.3 and
mequalities 2.4 and 2.5, respectively and belong to the
space PC([t ,, +<), R) and such that:

y(t)>0, t=t, (2.7
z(t;)zx(t;)zy(t;) (2.8)
y(t) | x(t) (1) 29
y(tn)zx(tn)zz(tn)zo, t,<t<t, (2.9)

Then,
Z(t)zx(t)zy(t), vt =t (2.10)

Consider now the impulsive differential mequality 2.4
together with the impulsive differential equation:

t(t))=0 tes

X'(t)+ipl(t)x(tf
Zplkx(t -1

(211)
t,))=0, vt, €8

From Theorem 2.2, we obtain the following:

Corollary 2.1: Let condition C2.1 be fulfilled. Then, the
following statements are equivalent:

¢ Tnequality 2.4 has a finally positive solution
+  Equation 2.11 has a finally positive solution

Lemma 2.2: Tet us now be given a non-autonomous
neutral impulsive differential equation with several delays

(2.12)

75

where, te(t, TWS, .8 for 1<k<e. We introduce the
followmng conditions:

p; e PC' ([tu, »),R, ),

([ty o). R, ); 1= <

q € PC([tn, o0

([t o) R} 1

1
'c]eC

c22

forall 1 <j«Mand 1<i<N,

C2.3 supt (t)<+oo, sup T (t, )<+

tzty ty 2ty
and
C2.4 supg,(t)<+oo, supo, (t, )< +oo

tzty (=

Assume that conditions C2.2-C2.4 and relations

2Ap, (1) +p,(t,))<1 and

-1

1<k<w{§:(qi (s)+ qlk) 8> t} >0

sup
1=1

(2.13)

are satisfied for all te(t,, T)/S and t,£S, vkeN. Letx be a
finally positive solution of Eq. 2.12 and set

I
(=x()-2p(Ox(t-5 () @19
=
Then, v is finally positive, non-increasing and
N
=—>q,(tk({t-o (1)), tes
=1 (2.15)

RESULTS AND DISCUSSION

In this study, we show that if conditions C2.2-C2.4
and inequalities (2.13) are satisfied, then every solution of
Eq. 2.12 oscillates provided the same is true for the non-
neutral impulsive equation:

N

+Zq1 ty(t—o,(t))=0, tes

” 3.1
+Zq1kY(tk tk)): 0,%t, €8
f
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Theorem 3.1: Assume that conditions C2.2-C2.4 and
inequalities (2.13) are fulfilled and suppose that every
solution of Eq. 3.1 oscillates, then every solution of
Eq. 2.12 also oscillates.

Proof: Assume conversely that Eq. 2.12 has a finally
positive solution x. Then, by Lemma 2.2, v is finally
positive. Also, x(t)>v(t) for te(t, T)/S and so (Eq. 2.15)
vields

N

vit)+ g (t)v(t-o(t))<0, tes

1=1

N
Av(t )+ > g vty
1=1

(3.2)
—o;(t,))=0, v, €8

By corollary 2.1, it follows that Eq. 3.1 also, has a
finally positive solution, which leads to a contradiction.
This completes the proof of Theorem 3.1.

Remark 3.1: Notice that it is possible to use Theorem 3.1
together with any explicit sufficient conditions for the
oscillation of all solutions of Eq. 3.1 to obtain explicit
sufficient conditions for the oscillation of all solutions of
Eq 212

We now describe a technicue, which can be used to
obtain successively improved oscillation results for
Eq. 2.12. In the anticipated procedure, Theorem 3.1 may be
thought of as being the first theorem. The second theorem
in this succession is obtained in what follows.

Let us substitute Eq. 2.14 into 2.15 to obtain

v'(t)+§q (t)v(t-
x(t-a(t)-1(t-c (t)))
Av{)+ T (-0 (1)) - S TP (-0}
t, — o, (t,)- 1 (t,

0,te8,

*X( fcl(tk))):O,VthS

3.3
Under the hypotheses of L.emma 2.2, we have

0< vty <x(t), te[t,, T)\S

and so (Eq. 3.3) yields the inequality

1)+ a (i 2p, (1-0,0)"

(t—cs(t)))so tes,

BB

1=1 1=1

Vi) Za 0v(i-
(t G th—-1
+§qlkv(tk

t, — o (t ) - Tj(tk

G(t)

*V( —Gl(tk)))SO,VtkES
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The following result, which improves Theorem 3.1, is
now obvious.

Theorem 3.2: Assume that conditions C2.2-C2.4 and
inequalities (2.13) are satisfied and suppose that every
solution of the equation

Y(t)+2ql(t)y(t— )+t ij (t-o,())
sy(t-o (-1, (t-0,1))=0, ts,

AY(tk)Jr ;qiky(tk -G (tk)) + ankzp] (tk - Gi(tk)) *

i=1 j=1

* y(tk -0, (t,)-1(t, - Gl(tk))) =0,Vvt, €8

oscillates, then every solution of Eq. 2.12 also oscillates.
The following result is an immediate consequence of

Theorems 2.1 and 3.2 applied to the neutral impulsive

equation with constant coefficients and constant delays:

A{X(tk)%pj x(tk - 'I:J)}r ZN:qﬂX(tk -6G,)=0,%t, €8
(3.4

Corollary 3.1: Assume that the coefficients and the
delays of Hq. 3.4 are non-negative real numbers such that

M
o pi+p) <1

j=1
and
M
+ Z(pJ +P )J+
-1

M

q +q,n)}{2(pj )T,

1=1

M
-{Z( }>el,te[tD,T)\S
1=1
Then, every solution of Eq. 3.4 oscillates.
If we continue in the direction which led to
Theorem 3.2 with simpler equation

[x(t)

A[x

—px(t-1 ] +q(t)h(x(tfc)):0,t$s
)-px(t, - 1) |+ q.h(x(t, —6))=0,vt, =8

(3.5)

where, t, t,>t,, we obtain the following result.

Theorem 3.3: Assume that pe(0, 1), 1e(0, <), qePC{(t,, =),
R,), 0eC.t, =) Ry),
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G, =supc(t) <+, q,=supq(t)<-too

2ty (=1

and that

}Lﬂiﬂf{(q(thqk)[“(g+(lf’;)2H>6-l (3.6)

—
|

Then, every solution of Eq. 3.5 oscillates.

Proof: Assume, for the sake of contradiction that Eq. 3.5
has a finally positive solution x. Set

v(t)=x(t)-px(t—-1)
Then, by Lemma 2.2, there is a t, = t; such that

0<v(t)<x(t)
for ¥t =1t, and

{V'(t)-&-q(t)x(t—c(t))—o, tes 1=t -5 o

Av(t, )+ qu(t - G(tk)): 0,vt, 3

where,
£ =max {t,0,}
Observe that
x(t)y=v(t)+px(t-T)
for, t>t,-£ and by induction, for n>1, we find
n-1

Spv(t—4r)+pix(t—nt), tzt, +(n-1)1-&

=0

x(t)
From this and Eq. 3.7, we see that the inequality

n-1
v'(t)+q(t)ijv(tfc(t)fﬂr)S0, for n>1, tes

4=0
n-1
Av(t, )+ q, > p'v(t, —o(t,)-£1)<0, nx1, Vi, 8

£=0

has a finally positive solution v. Hence, by Corollary 2.1,
the equation

n-1
u(t)+q()> pult-o(t)-£1)=0, for nz1 tes

£=0

n-1
Au(t,)+q, > pu(t,-o(t)-£1)=0, n=1, Vi, 8
£=0

also has a finally positive solution. Tt follows that for
every nx1,

77

lim inf (3.8)

t—s+m

{(Q(t)Jr QK)gp’ [o(t)+ ﬂr}} <e”!

We compute the sums of the series

Zpt b and
£=0 I-p

Condition (3.8) therefore suggests that

pt
(1-p)

1-p

Lim inf {(q(t) +q,) {ﬂ -

I

which, contradicts inequality (3.6) and completes the
proof of Theorem 3.3.

CONCLUSION

From the results obtained, it is obvious that the
anticipated oscillatory conditions depend not only on the
coefficients and delays of the given equation, but also on
the coefficients of the impulsive conditions. Their explicit
nature and what 1s more, the ease of their verification are
evidence enough of the advantage of these conditions
over attempts to determine them via characteristic roots.
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