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Abstract: This study concerns a family of generalized collocation multistep methods that evolves the numerical
solution of ordinary differential equations on configuration spaces formulated as homogeneous manifolds.
Collocating the general linear method at x-x , , , for k - 0,1...s, we obtain the discrete scheme which can be
adapted to homogeneous spaces. Varying the values of k in the collocation process, the standard Munthe-Kass
(k = 1) and the linear Multistep methods (k = ) are recovered. Any classical multistep methods may be
employed as an invariant method and the order of the invarnant method 1s as high as mn the classical setting. In
this study an implicit algorithm was formulated and 2 approaches presented for its implementation.
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INTRODUCTION

Geometric mtegration and in particular integration
methods on lie groups and homogeneous spaces, has
received much attention the last few years. Most of the
development has been related to generalization of Runga-
Kutta and other one step methods, mn the setting of
homogeneous manifolds and lie groups.

Comnsider the equation below:

Ya,(x) jx;i’ ~£(x); y(a) =7 (1)

and in the vectorised form
y(x) = £ y(x))y(a) =n 2)

Where, v', £ (%, v, 3o ) and y, (@) =y, 1= 1, 2,.m is
called a system of ivps.

The general k-step method (classical multistep
method) for solving Eq. 1 and 2 above may be written in

the form:

k

k
Enal Yaej = hz Bj fnﬂ (3)
iz

=0

Where o and 3, j = 0, 1...... k are given constants that are
independent of the differential equation to be solved, the

step size h and n i.e., the parameters {¢;} and {P}5
defines the particular method. Tt may be assumed that
o, = 1. If B, = O then the method is explicit whilst if f,# O
then a non-linear equation must be solved to determine
v, and the method 13 termed implicit.

Calvo et al. (1997) showed that the methods in the
family defined by Eq. 3 only can retain linear invariants. In
this study, a reformation of the multistep methods in the
seting of Lie groups and homogeneous spaces is
considered and it shows that the method respects the
configuration space of the problem when implemented in
a correct way.

Definition
A manifold: Tn a neighborhood of a € R" a manifold is
given by:

M={yel: g(y)=0; ()

When g: U -R" is differentiable, g (a) = 0 and g' (a) has full
rark m.

Definition
Differential equation on manifolds: Tet M be an (n-m)
dimensional sub-manifold of R*.

The problem
y=f) (3)
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is a differential equation on the manifold Eq. 4 satisfying
fly)e TMforally e M.

TM = {V € R there exist a differentiable path
v: (-€. €) ~R* with v (t)eM for all t,

YO - A YOV ()

Differential equations on mamfolds arise in a variety
of applications and their numerical treatment has been the
subject of many research reports. A naive approach for
the numerical solution of a differential equation on
manifold M would be to apply a method to the problem
Eq. 5 without taking care of the manifold M and to hope
that the solution stays close to the manifold. A foremost
requirement on a numerical integrator is that the numerical
approximation lies exactly on the manifold. But, if the exact
flow on the manifold has certain geometric properties, it is
natural to ask for numerical methods that preserve them.
Hairer et al. (2002) gave 2 illustrative examples (i.e., the
Mathematical pendulum problem and the Toda Lattice
problem), which show that the Trapezoidal method
preserves the structures of the original equations. He later
presented the projection methods using one step
numerical integrators, thus yielding, the approach of
geometric integration.

MATERIALS AND METHODS

Explicit multistep algorithms based on rigid frames
were proposed by Crouch and Grossman (1993). This
method assume that smooth vector fields E,..., E, on a
differentiable marnifold M are available such that the
differential equation can be written in the form:

y=Fy)=YL(yE,. yeM (7)

1=1

Where, the f; are real analytic functions on H>M. The
numerical schemes are defined in terms of vector fields
with coefficients frozen relative to the frame vector fields,
le,

]
F, =Y L(DE,

1=1

The k-step Crouch and Grossman (1993) methods
may now be written as:

1 _
un+k—1 - yﬂ+k—1,

1 1+ _ L hopFr ) (b )
U LY, e Y0 ) = Ee i (8)
(hog ;) i+ ;
#*_EQ =, ), 0=j<1-1,
0 1
yn+k - un+k—1 (h’ yn+k—1, LR "un+k—1 )
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Letting 1-2 this scheme becomes:

0 0 0
Voo = e(haﬂFYmk—l) ¥ e(h0€1 Pz I e(ha'k’lFYn)

oy ) (hoffy,, o) (haj1F,)
kg ke ok Yatie—t

©)

and it 1s clear that if

1-1
o, =Yoo 0<i<k-1

1=0

this algorithm reduces to the classical Adams Bashforth
method in the Fuclidean case:

kol
Yoske = Yorka T hZ O F (Y, ) (10)

i=0

The k-step Crouch and Grossman (1993) method
evolves the numerical approximation by composing flows
of vector fields on M. Computing flows of vector fields
are very time consuming operations and it may be
advantageous to consider methods that combined frozen
vector fields and compute the flow of the resulting vector
field at the end of each step only.

Munthe-Kaas (1999) improved on this by making an
assumption that there exists a Lie algebra g with a Lie
bracket [.,.], a left Lie algebra action defined as follows.

Let A: GxM-M be a left Lie group action. We get a
left Lie algebra action A: gxM-Mby A (v, p) = A (¥, p),
where, g - (F is the matrix exponential when G is a matrix
group.

A function £ MxM-g such that the ordinary
differential equation for y (t) € M can be written in the
form:

¥ =FALY) = L y) iy 0 =eM (1)

Equation 11 15 the canonical form of an ordinary
differential equation on manifold. We assume that ye M
and it follows that y' € TM, where TM, is the tangent
space of M aty € M.

It 18 proved m Munthe-Kaas (1999) that the solution
of Eq. 11 is given for sufficiently smallt, asy (t) = A
(u (t), p), with y (0) = p, where u (t)cg satisfies the
differential Eq. 12:

u’ = T(u) = dexp] (F(tLAup)); u@ =0eg  (12)

It 18 wnportant to note that
A(e(ul)’A(e(u2))) — A(e(ul)_e(%)’p) — A(e(B(ul:uz))) (1 3)

and hence,
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Ay, A, p)) = A (Blug, uy), p) (14
Where, B is the Baker-Campbell-Hausdorff formula.

McLaren and Quispel (2004) discussed using the
discrete gradient method and by bootstrapping repeatedly
the order of accuracy can be improved and the first
integrals can be preserved.

In this study, we follow the same approach of
Crouch and Grossman (1993) and we blend with
Hairer et al. (2002) to formulate an implicit multistep
method following the spirit of Trapezoidal rule which 1s
known to be structure preserving in geometric integration.

RESULTS AND DISCUSSION

The new implicit multistep methods: Tn this approach, we
consider B, # 0 in Eq. (3), then we:

o
un +k Yn+k,

1 #2y _ ohonF ) o (hoify o)
Wy (LYo o Yoo gy ) =@ it e (15)
1+

hod F,
w0, e ()

0<j<l,

0 1
Yn+k = un+k71 (h> Yn+k71,>" "Yn’un+k)
Letting 1 = 2, the new scheme becomes

0 0 n
Yoy = ) s R g g )
"

*e(ha%FYndc—l) % e(ho{FYfo2) &k e(thlF") B

(16)
(hegF, )
Yn+k

Hence, we have that if

this algorthm reduces to the classical Adams Moulton
umplicit method in the Euclidean case:

k
Vorx = Voues T DY 0 Fly, ) a7

1=0

To solve the problem Eg. 11 using a multistep
method, there to transform the previous information in the
k-1 steps to the new coordinate system in each step so as
to preserve the geometric structures.

In the spirit of Munthe-Kaas (1999), if we let t;to be
equidistant time points and y;=y (t). At step n of the new
algorithm the rhs. vy, 1s obtamed, by using a
coordinated chart centered at p = y,.,. Let w* € g be the
points corresponding to y,., € Gatstepn, 1.e.
=0,1,2 (18)

ERE R TR

(n)y _ .
Poyas @)=y, fori k+1
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Iff = fit, y» and . are known fori=0,..., k - 1 then
Ve ¢an be found by the following multistep algorithm:

£ =dexp, (£.) (19)
k K
Yoo =hYyBLe (20)
i=0 1=0
Yo = ;\‘y“dc—l ((Dl((n)) (21 )

Using the following transformation for w® = B {0 ®",
-0, "), we have
W, =B, - ") (22)
which gives the solution of Eq. 11 from time t, ., -t
defining an equation system for the unknowns:
Voo 0 and £y = £ (tyay, Vo) Tor p= 0 (23)
Theorem (1): Tf (v,.;, f (1., o)) € Mxg, i =0,..., k-1, then
the algorithm (1.91-1.22) generates an element y,., € M. If
the classical multistep method defined by the coefficients

o, and B, 1 = 0,.., k 1s of order q, then the order of
approximation of v, to y (t,) 18 ¢

Proof: We observe that w®™and §@ | i=0,... k-1 as well as
™ are elements of g. Solution of Eq. 20 yields an element
0™ € g. The first part of the thecrem now follows, since
Acg oMY yeM

Using a classical multistep method of order q to
integrate Eq. 12, we observe that the Baker Campbell-
Hausdorff formula B, introduces an order O (h*™)
modification of w™, i = 0,... k -1 and that dexp™ ®
introduces an O (h™") medification of f,, 1 =0, k- 1,
thus, the second part of the theorem follows by noting
that the pullback vector field fin Eq. 12 correct to order
(Munthe-Kaas, 1999).

Tt is a requirement and natural to impose a Lipschitz
condition on the problems in order to ascertain the
existence of solutions of the problems within the space of
consideration. Thus we state the following basic result for
the differential equations on manifold M.

Theorem (2): Assume that the Lie algebra g 1s a Banach
space and that T 1s Lipschitz with constant L. Then the
iteration:

k=l k-1
of ™ =hBdexply ()1 h Y BEY - oo™ (24
i=0 i=0

for the mmplicit multistep algorithm converges provided
that hp,L < 1.
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Proof: Letlll, be a norm on g. Consider & defined by the
iteration Eq. 24 with mitial condition & #of” . Thus, we
get that:

oo -t e -7
<o -t

(25)

Since hP,L < 1, this is a contraction and there exists
a unique fixed-point of iteration Eq. 24 in the complete
space g.

Procedures for implementing the implicit multistep
methods on manifolds: Two approaches are proposed
here. First, the use of predictor- corrector approach as in
Munthe-Kaas (1999). Secondly we shall use the self
starting algorithm of Fatokun and Onumanyi (2008) and
Fatokun (2007). This 1s done by using the idea of block
methods as illustrated below:

Let

vy =0, @y + ¥ )z + Pz, +

¥, Oz + P Bz (26)

The comresponding D {(collocation matrix) 1s
given as:

O () =Ly, (x) =3B, x, =003

4

1 x  x X; X,
0 1 2x, 3% 4x)
D=0 1 2x, 3x', 4x, (27)
0 1 2x,, 3x7, 4x,
0 1 2x.,, 3%, 4%

r+2 r+2

Where, D 1s invertible DC = I and hence, we obtain
explicitly y (£) in Eq. 26 with
0, (E)=1
1 —(X—Xr)4 +6h(:>(—xr)3 -
12h* |13p? (x-x,) +12h°(x-x,)

W () =

}
}

1 . i
Ws(%):W{B(Xfxr) ~10h(x - x,)’ + 90 (x—x, ).

W1(X):%{3(X—Xr)4 ~14h{x —Xr)3 +18h’ (x—x_)

1 {—2()<—>(r)4 +8h(x—Xr)3 —8h? (X_Xr)z

‘Uz(%):ﬁ

Evaluating, v (E) at x =X, X = Xy, and X = x,,,, we
obtain three discrete schemes

195

h
Y =Y. T g( 2Zr + 7Zr+1 74214% tZ,; ):

(28)
order 4, ¢, = 3
2880
Y=Vt ﬁ(’/zr +30z,, -8z ,+ 3Zr+2),
T e : (29)
order 4, ¢, = L
5120

Yoy =Y.+ %(zr +4z,, +z,.,,).order 4, :;—é (30)

Solving the Eq. 28-30, simultanecusly as an A-stable
wntegrator for z,,, z.,; and z., give the following first
derivative FD approximation schemes

T+

N

(64yr+g =Y~ Ven _1QYr)

36h (31)
—lzr, order 4, ¢, =
6 240
1
Zr+% _a(27Yr+2 + 64Yy+% 7108Yr+1 + 17Yr) (32)
1
+ g% order 4, ¢, = ==
1
Zoz = %(36)@2 ~6dy, 5 +36y.., *SYT) 33)

1
I ——
3 z ,order 4, ¢, = 5

Now, we put Eq. 31 and 33, respectively in the
following algorithm:

Zr+l :E(YI"f'Z + 4Yr+1 _‘Syr) (34)
—lzr, order2,c,=——
2 240
2
Zr+2 :7(yr+2 _2Yr+1 + Yr)+ Zr
h (35)

-1
order2, c, :g

to obtain the final algorithm to solve Eq. 11.

Numerical experiment: Munthe-Kaas (1999) used an
example by Zanna (1999), which is a first order differential
equation on manifold. Tet the manifold ™M G be a
matrix Lie group with lie algebra (g (.,.)). The action of
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the Lie algebra on G is givenby A: g *G - G, where A, =
exp (v).p. This reduces Eq 11 to a first order
differential Eq. 36:

y =f(t y)y withy (0) ¢ G (36)

This was conveniently solved as in Munthe-Kaas
(1999).

CONCLUSION

We have seen the theoretical framework of
integrating differential equations on manifolds. In this
study, we consider using implicit algorithims, which
theoretically is more accurate than the explicit types
described by Munthe-Kaas (1999). The geometric
integration methods are generally more expensive than the
classical methods.

In a follow-up study, we shall consider some second
order differential equations on manifold and use the self-
starting approach described in this research. This is
hoped to be a breakthrough in the geometric integration
approach and giving due respect to the configuration
space of the problem as compute the numerical solutions.
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