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Abstract: A mathematical model of HIV/ATDS transmission dynamics is proposed considering counselling and
Antiretroviral Therapy (ART) as major means of control of mfection. Threshold conditions are derived, mn terms
of the given model parameters, for the existence and stability of the disease-free and endemic equilibrium states
of the model, as well as the proportion of infected people to receive ART. Analytical and numerical results
obtained indicate that ART and counselling could be effective methods in the control and eradication of

HIV/AIDS.
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INTRODUCTION

A major method, apart from the use of the condom, in
the control of HIV/AIDS, 15 Antiretroviral Therapy (ART).
By thus approach, HIV positives are detected and placed
on antiretroviral drugs. Generally, there are public
awareness campaigns, which are intended to educate the
general public on the spread of HIV and how to control it.
Members of the public are encouraged to go for tests in
order to determine their HIV/ATDS status so as to benefit
from ART. ART does not cure HIV infection, it only
boosts the immune system of infected people against
secondary mfections, thereby prolonging their life span.
HIV positives are also detected through random screening
and contact tracing.

Here, we propose a mathematical model of the
dynamics of HIV, considering counseling and ART. The
population 1s partitioned into three compartments of
susceptible S(t), mfected I(t) and removed R(t). A
susceptible 13 an individual that 15 yet to be infected, but
1s open to infection as he or she mteracts with members of
the I-class. An mfected individual is one, who has
contracted HIV and is at some stage of infection. A
removed individual is one that is confirmed to be HIV
positive, counselledand is receiving ART.

Tt is assumed that the recruitment into the S-class is
only through birth, at a rate b and it is proportional to the
total population N(t) = S(t) + I(t) + R(t) at time t. Death 15
explicit in the model and it occurs in all classes at a

constant rate 1. However, there is an additional death rate
o, in the T and R-classes due to infection. There is a
maximum period of time, T after infection, which a member
n class I must leave the class through death. The death
rate in the R-class is therefore, given by « = ¢,e™”, where
k 15 the efficacy of the antiretroviral drug. The higher the
value of k the smaller the value of ¢ and vice versa.
Clearly a<c; and ¢ = ¢y whenk = 0 (1.e, no ART).

The recruitment into the R-class from the I-class
depends on the effectiveness of public campaign or
counselling and this is done at a rate 0. 0 can also be
referred to as the treatment rate. We ignore vertical
transmission and age structure in the formulation. An age-
structured formulation of a similar model has been
proposed by Akinwande (2006), although not quite a STR
model as ours. Mathematical models to mvestigate the
effect of treatment and vaccmation on the spread of
HIV/AIDS can be found, for example, in Kaosimore
and Lungu (2004), Yang and Ferrewa (1999), Hsu-
Schmitz (2000), Swanson et al. (1994). Models for the
control of HIV using the condom can be found, for
example in Hsieh and Velasco-Hernandez (1995). Hsieh
(1996), Mastro and Limpakarnjanarat (1995), Kimbir and
Aboiyar (2003) and Kimbir et al. (2006).

FORMULATION OF THE MODEL EQUATIONS

The following diagram will be found useful in
formulating the model Equations.
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Fig. 1: A flow diagram of the transmission of HIV
considering counselling and ART

From the assumptions in the study and the above
diagram (Fig. 1) the following model Equations are
derived.

ds

o =bN - B(1)S s (1)
E:B(t)S—(pHo:n-s-G)I, 2
%:GI—(M+O(.)R 3
where:
N(t)=s(t)+ 1) +R(t) 4)
and
=0 e™’ (5)

The incidence rate B(t) at time t is given as in Hsieh
(1996), namely

_cpI+¢'BR
N

B(t) 6)

where, B is the probability of transmission by an
individual in class 1 and P' i1s the probability of
transmission by an individual in class R, ¢ and ¢' are,
respectively, the average number of sexual partners per
unit time for individuals in class T and R. B is the
reproduction rate of the population, ¢,, & and ¢ are as
defined in section 1. cp and ¢'p' are therefore, the net
transmission rates for the classes T and R, respectively.
As aresult of counselling, it is assumed that ¢'B'<c B. For
ease of reference we redefine the model parameters in the
following Table 1.
Adding Eq. (1-3), we have
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dN

a
Table 1: Model parameters

(b—pu)N-aI-aR (7

S(thy =  Number of susceptible at time t
Ity =  Number of infected at time t
R(t) =  Number of infected receiving ART at time t
b = Population birth rate
i = Population death rate
g =  Population death rate of infected not receiving ART
o = Population death rate of infected receiving ART
T = Maximum litespan after infection
k = Efficacy of ART per unit time
c = Average number of sexual partners of members of class I
c = Awverage number of sexual partners of members of class R
B = Probability of transmission by members of class I
pr = Probability of transmission by members of class R
ol = Proportion of infected receiving ART per unit time
Let,

S:E,iziandrﬁ,

N N N

then we have s = 1 - 1 - r and the governing Equations of
the model, in proportions i and r, are given below.

" (eBi+c'Pr)(l-i-1)

—(o, +b+ o )i+air+ o, i’

(8)

%)

dr_ oi—(o+bjr+ o ir+ ou?
dt

The Equations i proportions have biological
meaning as they define prevalence of infection.

EXISTENCE AND STABILITY
OF EQUILIBRIUM STATES

It 1s easy to see that (0, 0), 13 an equilibrium state of
the model Eq. (8) and (9).

The Jacobian matrix J; associated with the equilibrium
state (0, 0) is given by:

- cf— (o, +b+o) cpr
b o (0 +b)
Let,
_ <P
o, +b+o

and define D = {(I, r): 1=0, =0, 1+1 =1}, then we have the
following result. Shown in Fig. 2.

Theorem: Given «, & ,, b, 0, cf, ¢/p'>0. If ¢ + b=w,; and
0<R<1, then there exists a Disease-Free Equilibrium state
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(DFE), (0, 0), which is Locally and Asymptotically Stable
(LAS), otherwise there exists an endemic state (1%, r*),
whichis LAS in D - {(0, 0)}.

Proof: We see from the hypotheses of the theorem that

Trl, = (e, +b+0o)(R—-1)—(a +b)<0
det]>- (¢, + b+ 0)* (R - 10,

Therefore, the disease-free state is locally and
asymptotically stable. We know that the DFE 1s unstable
if the condition R<1 does not hold, that 1s if R=1. In this
case, we only need to show that the region D is invariant,
contaimng no periodic solutions of the system Eq. (8) and
(9), so that all solutions tend to the endemic equilibrium
state (1%, ™).

First, we shall show that D is an invariant region. We
do this by showing, as in Beltrami (1989), that the inner
product of the vector field defined by Eq. (8-9) with the
inward normal to D is non-negative.

Let, f,(i, r) and f,(i, r) denote, respectively, the rhss of
Eq. (8-9). Going back to Fig. 2, we see that the inward
normal to the 1-axis 1s (0, 1) therefore,

£ , —_
(0, ¢ :fQZ(GI*(C(,+b))I'+C(,DI'1+DLI' =0
2

(since, r = 0 on this axis). Next the inward normal to the r
axis is (1, 0), so that

(1,0 [?J £ =cprl-1)>0

(since, 1 = 0 on this axis and r<1). Finally, on the line 1 +
r=1, we have

TA 1 fl]
—(-1,-1 =0,
7 )[fz
1
\ itr=1
D
o= p i

Fig. 2: The region D in R2

using similar arguments. Thus, we have proved that D is
invariant. Tt remains to prove, using the Bendixon-Dulac
criterion, as in Hsieh (1996), that there are no periodic
solutions of the system (8) and (9). Let, g = 1/1r, then we
have

b3 b3 g o
E(gfl)+§(gf2)< 7[F+TJ< 0

Therefore, there are no periodic solutions of the system
in D. Hence, the proof.

RESULTS AND DISCUSSION

In this study, we formulated and studied a
mathematical model for the transmission of HIV/AIDS
considering counselling and Antiretroviral Therapy
(ART). The model parameters are shown in Table 1. The
model Equations are derived with the help of a flow
diagram mn Fig. 1.

The mam result of the study, 18 found in theorem 1,
where threshold conditions are given for the stability of
the disease-free and the endemic equilibrium states of the
model. Whereas the condition o + b=, holds vacuously,
the number

R—_ P
o, +b+o

may not always be >1 From the rhs of the expression
for R, we see that increasing the value of sigma
(i.e., increasing the treatment rate) reduces the value of R
below 1. Similarly, reducing the value of ¢ or B may
achieve the same purpose. Thus, for an effective ART
programme, it may be necessary to also reduce the
transmission probability and the average number of sexual
partners of the infected individuals. These can be done

througl®4gumsellipg and education. From the expression
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Fig. 3: Prevalence of Infection without any intervention
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o8- parameter values are: b=0.5, ¢, = 0.2,
—0,c=1,¢=0,=1,p'=0
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Fig. 4 Prevalence of infection with low treatment rate
(o = 0.2). Other parameter values are: b= 0.5, ¢, =
0@5.T=1?tt =0,c=1,¢'=0,p =1,p"=0

0.24

Time (t)

Fig. 5:Prevalence of mfection with high treatment rate
(o = 0.8). Other parameter values are: b= 0.5, ¢, =
02, T=10,k=0,¢c=1,¢=0,p=1,p"=0.

R<1, we see that the mimimum proportion o of mfected
individuals to receive ART 1s ¢f - (a; +b).

Numerical examples, using hypothetical data,
satisfying the inequality cp>(,+ b) give the following
results. Figure 3 shows an increasing prevalence in the
absence of ART (ie., o = 0). Figure 4 shows the
prevalence of infection when the treatment rate is low
(i.e., 0 =0.2), while Fig. 5 shows prevalence of T nfection
when the treatment rate 1s high (1.e., 0 = 0.8). Hence, this
study confirms that counselling and ART could be useful
methods for the control and eradication of HIV/AIDS.
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