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Inventory System Exposed to Calamities with SCBZ Arrival Property
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Abstract: This study 18 devoted to the analysis of (s, 5) mventory system where the demand process 1s
assumed to a combination of single and bulk demand for entire inventory where the rates of demand have the
SCBZ property. The lead times and intervals of time between successive demands are i.i.d random variables.
We discuss the exponential case of 2 models. In model 1, unit demand rates are varying and in model 2, bulk
demand rates are varying. Steady state probability vector of mventory levels 1s obtained using NEUTS matrix
method by Nutes in 1980. Numerical examples are also presented.
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INTRODUCTION

Single commodity inventory problem of (s, S) type
was discussed by several researchers. Daniel and
Ramanarayanan (1988) discussed (s, S) inventory with
random lead time and wnit demand. Ramanarayanan and
Tacob (1998) studied this system with bulk demand. Tn all
these models, either unit demand or bulk demand was
taken up for discussion separately. Chenmappan and
Ramanarayanan (1995) treated (s, 3) mventory system
exposed to calamities. Tn this study, the demand process
is assumed to be a combination of single and bulk demand
for entire mventory where the rates of demand have the
SCBZ (Setting Clock Bock to Zero) property.

For a detailed study of the SCBZ property, one may
refer to Raja Rao (1998). According to this property the
probability distribution of rendom wvariable has a
parametric change after a truncation point. In models
considered here the parametric changes occur for unit
demand or bulk demand rates after an exponential time.

Considering exponential distribution arrival, calamity
and lead time, 2 models are studied in this study using
block partitioning of the infinitesimal generator of the
underlying continuous time Markov chain of the systems.
The steady state probability vectors of the two models are
mteresting. Numerical examples are also presented. In
model 1 arrival rate changes after an exponential time and
the calamity rate is constant. When the inventory
contains perishable items one may like to charge the
arrival rate of demands to mmprove sales. In model 2 arrival
rate for unit demand is constant and bulk demand rate
charges after an exponential time to make profits or clear
stocks.

MODEL-1: VARYING UNIT DEMAND RATES
The following are the assumptions of the model.

¢  The maximum capacity of the inventory is S and
ordering level is s (S-s > s).

s The arrival rate of unit d emand is A,. If it does
not occur within an exponential time with parameter
¢ the arrival rate changes to A, Immediately upon
arrival, the rate becomes A,.

»  The rate of occurrence of calamity 1s «.

»  When the inventory falls to the level s from above an
order for S-s umits are placed. The lead time
distribution for such an order is exponential with
parameter .

s When a calamity occurs an order 1s placed for
S units, the lead time distribution is exponential
with rate
cancelled.

B and order pending if any is

The inter arrival time distribution of unit demands
may be derived as follows. Let Y be the time between two
consecutive unit demands. Let its pdf be h(y).

Considering the truncation point T, in which the
parameter changes we note
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Noting the truncation pomt T, itself 1s a random
variable with pdf ce™™, we find
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Also we note that p+q = 1.

For Markovian models it is advantageous to set up
the infimtesimal generator for finding probabilities. The
arrival process of unit demands has two phases with rates
A, and A, The state of the system may be written as
follows.

1

S

S={G.jx1<i<s j=12}{0p{o

The mventory 15 in the state (1, J) when 1 units are in
the inventory and the unit arrival rate is A, for | <i < Sand
7=1or 2. The mventory is in state O when no unit 1s in the
inventory and lead time rate is u to supply S-s units. The
inventory is in state 0" when no unit is in the inventory
due to a calamity and the lead time rate is P to supply S
units. The infinite generator Q of the continuous time
Markov chain is given by:

The sub matrices inside the infinitesimal generator Q are given as follows
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.The matrix Q is of order 2(S + 1) and all the unmarked Hs—j ~ 1L, |:A T Jm ©
entries are zero. Let TI be the vector of steady state _
probabilities associated with Q satisfying for j=0,12,---.s-1
Now
I1Q=0and [Te=1 (7) IT,(—p—c)+ILA =0
Where:
I=(IL I, - I1, T1,, T1,..) gives
g A
and T, =TT, [A (=T ] , 9
. L+ o
e=(L11L---1)"
Now
We note from Eq. 7 [LT+ILu I+Hom (B.0)= 0
HsTrJrL[sHA = 0 .
which implies BIves I I ACTY (D) Ty
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+ 1L, (B.O)(-T)
Similarly, we may note Further
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Also,
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gives
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Similarly we may find
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forl <1<s-1.

Now
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This gives
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[T, is now calculated using the total law of probability [T,e+II. e+ ---+ILe+II + 1_[0* =1 . This gives using

Eq. 8-14
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Equation 9-17 present all the probabilities of the system.
MODEL-2:-VARYING BULK DEMAND RATES
The following are the assumptions of the model.

*  The maximum capacity of the mventory 1s S and ordering level 1s s (S-s > s).

»  The arrival rate of umt demand is A.

*  The rate of occurrence of bulk demand 15 ¢,. If it does not occur within an exponential time with parameter ¢ the bulk
demand arrival rate changes to ¢,. Upon occurrence of a demand the rate becomes o,.

¢+ When the inventory falls to the level s from above an order for S-s units are placed. The lead time distribution for
such an order is exponential with parameter p.

¢ When a bulk demand occurs an order is placed for S units, the lead time distribution is exponential with rate  and
order pending if any is cancelled.

We may find using the method described in Model-1 the time to occurrence of the bulk demand has pdf g(v) and
Cdf G(y) as follows.

—ay
( ):(0'.1 —O’.z)(C-FO’.I )efy(mﬁc) + 00'.26 ’ (18)
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We note that p’ +q’ = 1.
We also note that the continuous time Markov chain of the model has the state space

={@po<i<s j=12p0f07}
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The inventory is in the state (i, j) when 1 units are in the inventory and the bulk arrival rate is i for 0 <1 < 8 and
j=1.2 The inventory is in state 0" when the lead time rate is B for bulk order of size S. The infinitesimal generator  of

the system can be partitioned as follows:
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The sub matrices inside the mfimitesimal generator Q are given as follows
T{halc c } T,{ho&lcu c
0 “h—a, | 0 “h—ot, —
2 2 “" (21)

t): -, —c—L c , onr: o,
0 —0, — U N Oy

The matrix Q 1s of order 2(S + 1) + 1 and all the unmarked entries are zero. Let I be the vector of steady state
probabilities associated with Q satisfying

TIQ=0and IT e=1 (22)
Where:
M=(IL I, - TT,.T0,. TT,.).
As in the Model-1, we may note that here also
I, =1, [0DCTY |7 forj=0,02, sl (23)

Similarly we get,

e
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I, =L, [ 0DETY | [0DeT)" ] @

Using the first column of Q

T+ T+ TT.(B.0)= 0

gives
IL =1L, [ 0DCTY T DTy + I, o)1) (25)

Proceeding as in model 1, we may note,
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We further obtain using similar arguments,
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for2<j < S-25-1.
We use the last column of matrix Q to obtamn IT,*.
The equation
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Using total law of probability IT , may be calculated. The equation TT.e+I1, ,e+---+IL e+l e+ Il =

using Fq. 25-28
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Equation 23-30 present all the probabilities of the system.

(29)

(30)

(31)

=1,

0.1085,
=0.3333. The sum

NUMERICAL EXAMPLE {7\‘1 — —c
T=
Numerical example for model 1: Let the maximum 0 —hom
capacity of the inventory be 5(3 = 5) and the reorder level , | —— A —a-c—u
15 2(s = 2). The infimtesimal generator order (12) of the T'= 0
finite state space continuous time Markov chain 1s as
follows. Ay O A
50 4 3 2 1 0 0% A= [ " }A {
2 4 3 E i , 0O A2l

s T A «

4 T A o

3 T A o For fixed values of A, = 1, A, =2 , & =

= ) - p = 2 and P =2, we compute the components of IT.

2 Rl A o The steady state probability vector

1 ul T A o

0 L, —L—o o 1= (Hs,H4,H3:Hz,H1,Ho,HO*)

0* | (B.0) —B

18 given by I, = 03240, II, =
10, = 0.0325, 11, = 0.0091, TI,, = 0.0035, II,"

where, T, A, T" A’ oci' are as given: of steady state probabilities is found to be 1.0000.
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Table 1: Compute thee.ilfor A =1.2 3. 4and 5

Table 4: Compute the el for n=1,2 3 4and 5

Ay e.il I e.il

1 2.7756 1 2.7002

2 2.5629 2 2.7756

3 23785 281

‘5‘ ;-al;;é 4 2.8308

- 5 2.8447

Table 2: Compute the e.i.lforc=1,2, 3, 4and 5

C eil Table 5: Compute theeilfor x=1,2 3, dand 5

1 2.7756 o eil

2 2.7299 1 2.7756

3 2.7005 2 22418

4 2.6799 3 1.8552

3 26647 4 1.5751
5 1.3658

Table 3: Compute theeilfor A, =1.2 3.4 and 5

}10 ;.12;1569 Table 6: Compute thee.ilfor(=1,2,3,4 and 5

2 27756 B el

3 2.7200 1 2.0817

4 2.7005 2 27756

5 2.6799 3 3.1226
4 3.3307
5 3.4695

Case 1: (Varying first demand rate A,) For the fixed values
ofe=1,A=2p=2a=1andp =2 we compute the e.1.1
for A, =1, 2, 3, 4and 5. They are given in Table 1.

It is clear from Table 1, when the first demand rates 4,
increase, the e.1.] decrease.

Case 2: (Varying ¢) For the fixed values of A, =1, 4, =2,
n=2a=1andp=2wecompute theeilforc=1,2, 3, 4
and 5. They are given in Table 2.

Tt is clear from Table 2, when the first demand rates ¢
increase, the e.1.] decrease.

Case 3: (Varying second demand rate A,) For the fixed
values of A, =1,¢=2, u=2, ¢ =1and =2 we compute
theeilfor A,=1,2,3, 4and 5. They are given in Table 3.

It 18 clear from Table 3, when the second demand
rates mncrease, the e.1.1 decrease.

Case 4: (Varying lead time p when calamity occurs) For
the fixedvalues of A, =1 ,c=1, 4, =2, ¢ =1and p = 2 we
compute the e.1l for p=1, 2, 3, 4 and 5. They are given in
Table 4.

Tt is clear from Table 4, when the lead time p
(for calamity order) increase, the e.i.] increase.

Case 5: (Increasing calamity rate ¢) For the fixed values
of A, =1,¢=1,A,=2, =2 and P = 2 we compute the e.il for
¢ =1,2, 3 4and 5. They are given in Table 5.

Tt is clear from Table 5, when calamity occurence rate
increase, the e.1.] decrease.

Case 6: (Varying lead time rate when calamity occurs) For
the fixedvalues of A, =1,c=1,4, =2, ¢ =1 and p=2 we
compute the e.il for B =1, 2, 3, 4 and 5. They are given in
Table 6.

Tt is clear from Table 6, when the lead time [
(for calamity order) increase, the e.1.] increase.

Numerical example for model-2: Tet the maximum
capacity of the inventory be 5 (8 = 5) and the reorder level
15 2 (3 = 2). The infimtesimal generator order (13) of the
finite state space continuous time Markov chain 15 as
follows:

5 4 3 2 1 0 0%

5 T 7‘::[ o’
4 T Al o
3 T Al o
2 | uI T a1 o
1 il T Al o
0 wul T «
0% ’

L(R.0) —B.

where, T, A, T" A’ ¢ are as given:
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Table 7: Compute thee.ilforo, =1,2. 3, 4and 5

Table 10: Computethe eilforpn=1,2 3, 4and 5

oy eil u eil

1 2.5678 1 2.6445
2 2.2788 2 2.6643
3 2.0439 3 2.6758
4 1.8509 4 2.6832
5 1.6901 5 2.6883
Table 8: Compute thee.i.lforc=1,2 3, 4and 5 Table 11: Compute the el for A =1,2, 3, 4and 5

C e.il L eil

1 2.6643 1 2.6613
2 2.5678 2 24245
3 2.5098 3 22238
4 24711 4 2.0473
5 24434 5 1.8907
Table 9: Compute thee.ilforo;=1,2.3,4and 5 Table 12: Compute thee.ilfor3=1,2 3 4and 3

ey eil B eil

1 2.8569 1 1.9031
2 2.6643 2 2.6643
3 2.5678 3 3.0742
4 2.5098 4 3.3304
5 24711 5 3.5057

For fixed values of ¢, = 1,0, =2, A = 1,p=2and
B = 2, we compute the components of TT. The steady

state probability vector
T = (TT, 7T, TT,, TT, 7T, TT, 71 )

18 given by I, = 03660, I, = 0.1543, I, = 0.0622,
10, = 0.0137, I, = 0.0030, I, = 0.0008, IT," = 0.4000. The sumn
of steady state probabilities is found to be 1.0000.

Case 1: (e.1] for the increased first arrival rate ¢, (bulk
demand)). For the fixed values of c=2¢,=2, n=2,
A=1and p =2 we compute the eilforg, =1,2, 3, 4and 5.
They are given in Table 7.

It 13 clear from Table 7, when the bulk demand rates
increase, the e.1.1 decrease.

Case 2: For the fixed values of ¢, =1, o, =2, u =2 A=1
and pu =2, we compute the el forc =1, 2, 3,4 and 5. They
are given in Table 8.

Tt is clear from Table 8, when the first demand rates
¢ Increase, the e.1.1 decrease.

Case 3: (e.i] for the increased second arrival rate ¢, (bulk
demand)) For the fixed values of ¢, =1,¢c=1,u=2 A=1
and p =2, we compute the e.1.l for ¢, = 1, 2, 3, 4 and 5.
They are given in Table 9.

It 1s clear from Table 9, when the second demand
rates mncrease, the e.1.1 decrease.

Case 4: (e.1] for the ncreased lead time | (umt demand))
For the fixedvalues of ¢, =1, ¢=1,0,=2, A=1and p =2,
we compute the el for p=1,2 3, 4 and 5. They are given
mn Table 10.

119

Tt is clear from Table 10, when the lead time u(when
unit demand ocecurs) ncrease, the e.1.] increase.

Case 5: (e.1l for the increased demand rate A (umit
demand)) For the fixed values of ¢, =1, ¢=1,0, =2, u=2
and f = 2, we compute the e.i1for A =1, 2,3, 4and 5. They
are given in Table 11.

It 18 clear from Table 11, when calamity occurrence
rate mcrease, the e.1.1 decrease.

Case 6: (e.i] for the increased lead time B (bulk demand))
For the fixed values of ¢, = 1,c=1,a,=2, u=2and A =1,
we compute the e.il for p=1, 2, 3, 4 and 5. They are given
in Table 12.

It is clear from Table 12, when lead time ( when bulk
demand occurs) increase, the e.i.] also increase.
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