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Abstract: This study models the dynamics of a communication satellite driven by a white noise sequence and
proposes a fimte-time filtering solution in which state estimation was addressed. The dynamics of the satellite
assumed linear and reducible to an equivalent interconnection of subsystems enhanced computation of the
filter gain matrix from the recursive relation. The significant practical benefits of using the stationary form of

the Kalman filter in the computation were established.
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INTRODUCTION

For many space applications involving data
communication, a large nmumber of satellites have been
launched mto the earth orbit. For effectiveness in their
operation, the attitude must be observable and the
dynamics stabilizable (Flanagan, 1969; Sohn, 1959). By the
former is meant that it should be possible to orient the
satellites in a preferred or specified attitude and by the
latter 1s meant that if the satellite 1s uncentrolled, it should
be possible to obtain a time history of its attitude by
suitable instrumentation and telemetry.

Since measurement of the physical parameters made
by satellite-borme mstruments is strongly dependent on
the orientation of the mstrument, it 1s necessary to either
control the attitude precisely or provide information
regarding the attitude to enhance realistic interpretation
of the results.

In general, the satellites and the environment in
which they operate are far from 1sotropic (Flanagan, 1969)
consequently, in the case of scientific satellites. In the
case of communications satellites of active relay type, the
effective power transmitted from the satellites depends on
the satellite transmitter power, transmission efficiency and
antenna gain. In such systems, many of the design
techniques based on state variable approach assume that
values are available for all the states for a given control
vector.

However, in most practical situations, it is not
possible to measure all the states and furthermore, the
measurements that are available often contain significant

amounts of random noise and/or systematic errors. A
near-earth satellite, for example orbiting in the attitude
range of 150-450 km (Flanagan, 1969) encounters small
but non-negligible aerodynamic forces due essentially to
gravity waves set up in a stably stratified atmosphere
(Obinabo, 1978).

The influence of major environmental forces on the
attitude response of gravity gradient satellites using
essentially both analytical and numerical techniques
presents a problem of major interest to the process
engineer.

Several aspects concerning formulation of the
problem which rely on current measurements of the
process variables and the ease with which detailed
characterization of drag resistance effects of gravity
waves 1n stably stratified atmosphere especially as it
affects free and forced rotation of astronomical satellites
through 1t have been addressed in the existing literature.

In absence of correct measurement, any change in
the control vector can hardly influence the dynamics of
interconnected subsystems thereby making it difficult to
establish directly the true value of the process data since
all measurements are unavoidably subject to noise
(Oyediran et al., 2010). In these situations, on-line
estimation techniques produce estimates of the true
process values from computation of a suitable process
model.

To this end, the Kalman filter has received
considerable attention in the existing hiterature (Kalman,
1960, Hsiao and Wang, 2000, Oyediran ef al., 2010) and
has been applied successfully in the aerospace industry
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(Athans, 1971). Furthermore, there has been a number of
theoretical investigations and simulation studies of its use
in process control applications. Given a signal model that
consists of a linear dynamic system driven by stochastic
white noise processes, the Kalman filter (Kalman, 1960;
Foster and Saftman, 1970) exploits a state space model for
optimal filtration of noisy measurements. An interesting
description of the history of Kalman filtering theory
(Grimble, 1981; Tjung, 1979) and the applications include
navigation and guidance, global positioning systems,
target tracking, commumications and signal processing
and electrical machimes. A precursor to the Kalman filter
was the Weiner filter which was derived independently
by Weiner and Kolmogorov (Oyediran ef al., 2010) and
which gives a method of optimally attenuating noise in
process measurements. However, the Weiner filter 1s
limited to time-invariant problems nvolving stationary
noise sequence. The filter algorithm 15 not
computationally straightforward as the Kalman filter.

This study presents solution to the filtering problem
in a communication satellite process due essentially to
drag resistance effects (Obinabo, 1978) associated with
gravity waves 1n the satellite’s atmosphere. The overall
study shows that a filter can be postulated to define a
covariance matrix to yield unbiased measurements of the
process variables.

MATERIALS AND METHODS

Generally, estimation of process variables
contaminated with noise are formulated on the basis of
maximum likelihood (Athans, 1971; Kalman, 1960) using
statistical information in terms of joint probability
distribution functions. When the additive, zero-mean white
gaussian measurement noise is defined in terms of mean
values and variances which will be appropriate for many
practical applications, the least-squares solution is
formulated as a deterministic problem (Bacher et al., 1981;
Ho, 1962; Sage, 1967) with appropriate weighting that
leads to the maximum likelihood estimate. The modeling 1s
enhanced using the discrete-time stochastic sequence as

follows:
x(k+1)=¢x(k)+ Aulk)+8d(k )+ Cw(k)

= (1
y{lk)=Cx(k)+v(k)

Which 1s the linear stochastic time-invariant state
space model where x is the nx] state vector, v is the mx1
control vector, d is the px1 distwbance vector, ¥ is the
1x1 output vector and A 8L and Care constant
matrices. Vectors are here denoted by single underlines
and matrices by double underlines. It 1s assumed that the
measurement noise vector v and the s-dimensional
process noise vector w are zero mean, uncorrelated and
have covariance matrices of Q and R, respectively.
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The Kalman filter generates a state estimate & which
is the solution to the optimal estimation problem in Eq. 1.
Now, with the Kalman filter, the known or assumed noise
covariance malrices, @ and R and the imtial state
covariance matrix B(0), generate an estimate which is
linear with respect to the measured outputs ¥ and which
provides a minimal variance estimate.

Suppose the control law of mterest i3 a proportional
state feedback controller with a constant gain matrix K as
follows:

(2)

It can be shown that the multivariable controller in
Eq. 2 1s easily extended to include mtegral, feed forward
and set point control modes. In order to implement
the control law in Eq. 2, measurements of all n state
variables are required but in many practical control
problems, only measurements of the | input vanables are
available where 1<n .

Omne possible strategy 1s to use a state estumation
technique to generate an estimate of the state vector, %
and then substitute the estimate in the control law of
Eq. 2. This approach results mn the controller:

The filtration procedure generates an optimal
estimate defined as follows:

(3)

Where (k)
model using the state estimation plus the measured

18 calculated from the deterministic

process mputs from the previous time interval, ie.,

x{k)= 0&(k-1j+ Au(k-1}+ 8d{k-1) ()

RESULTS AND DISCUSSION

The filter gain matrix, K(k) is generated from a
recursive relation. If it is assumed that the observation
period 1s long compared to the dommant time constants
of the process then the gain matrix in Eq. 3 becomes a
time-invariant matrix, £. There is a significant practical
advantage n using the stationary form of the Kalman filter
since only a single matrix, K | rather than a sequence of

time-varying matrices E(k) need be stored. To this end,
we consider the scalar system (Fig. 1) which reduces
Eq. 1 to the following:



J. Mobile Commun., 4 (2): 33-37, 2010

) i)

u o+ 1 x + v
l(:) ) s+l

Fig. 1. Linear and reducible to an eduivalent
interconnection of sub-systems
x(k+1)=ax(k)+ow(k) 5)

z(k+1)=hx(k+1)+v(k+1)

Where z (k+1) are the measured outputs and w (k)
and v (k) are zero-mean stationary white noise sequences:

E[WZ (k)} =q
E[v2 (k)} =r

E[v(k)w(j)|=0foralk,j

The notation %k/j) will be used to mean an estunate
of the state x (k) based on all information up to the time j,

*  l=j-prediction
* Lk =j-filtering
*  k<g-smoothing

In this study, we consider filtering problem by
determining an estimate £(k+1)/(k+1) of the state x{k+1),
of the given model that 13 a linear combination of the
previous state and the measurement. We assume the
estimate *(k/k) is available. From estimation theory, we
know that the best estimate of x (k+1) gives measurement
up to time k is the minimum variance or the conditional
mean E [x (k+1)k]. From Eq. 1:

R((k_1)/k)=E[x(k+1)k]

- (6)
—ab[x{k)/k |+ cE[ w(k}/k]

By definition:

E[x(k)/k]|=%(k/k)
because w (k) 13 a zero mean white noise process:

E[w(k)/k]=0

Hence Eq. 6 becomes:

R((k+D/k)=ar(k/k) (7

2(k+1)=h&((k +1)/k) &)

With the measurement 2(k+1) now carried out, the
error in the prediction of Eq. 8 was determined as follows:

z(k+1)=z(k+1)-2(k+1) @)

The prediction of Eq. 7 can be improved by using the
information that we have now got available at time (k+1)
and adding a proportion £ of to &((k+1)/k);

R((k+1)/(k+1))=&((k+1)/k)+kz(k+1) (10

This is a predictor-corrector type of equations which
tries to drive Z to zero. Substituting Eq. 8 and 9 into 10
yields:

R((ke+1)/(k+1))= (1+ kh)&((k+1)/k )+ kz(k +1)

(11)
2((k+1)/(k+1))= (1+kh)ak (k/k)+kz(k+1)

(12)

Equation 12 1is the defining equation of the state

estimator which estimates x (k+1) from only the current

measurements z (k+1), z (k) etc., and the previous estimate

2(k/k). . The only problem remaining is to select k. this
was done by defimng the estimation error as follows:

R(k+D=x(k+1)-%((k+1)/(k+1)) {13
The filter gain k was chosen such that:
B (x(k+1)-R(k+ Vk+1))' |- Minimum  (14)
We now define the variance as:
p(k+1)=E[&*(k+1)] 15

Squaring Eq. 13 and taking expectation, noting that
the cross product terms E [x (k) w ()], E [w (k) v (k+1)]

etc., are all zero:
plk+1)= (lfkh)2 azp(k)+(1*kll)2 c’q+ k°r 16)
=(1-kh) p*(k+1)+ k'
Where:
p*(k+1)=a’p(k)+c’q (17)

Differentiating Eq. 16 with respect to k and setting it
to zero:
dp(k+1)

" =z(-h)(1-kh)p*(k+1)+2kr=0
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giving:
*
go_Prlk=bh (18)
hip*(k+1)+r
Substituting Eq. 18 mto 16:
p(k+1):M:(1—kh)p*(k+1) (19)
hip*(k+1)+r
Which gives the Kalman-Bucy filter as follows:
p*(k)=a'p(k-1)+c'q (20)
hp*(k
( ):# 21
hip*(k)+r
% (k/k) =ak((k—1)/(k-1}}+ k(k) 22)
[2(k)-ahg((k-1)/(k-1))]
p(k)=(1- k(K )p*(K) (23
Example: Here, we consider the dynamics of the

satellite (Fig. 1) assuming they are linear and
reducible to an equivalent interconnection of
subsystems. The state and output equations were
determined as follows:

X=-X+UuU+W

Y=X+V

From the Riccati equation with A =AT=-1,c=G=1
and Q = 2R , the co-state variables:

2

. p
=op-t 4
P P R Q

were cbtained. For steady state filter P=0 giving:

—2p—%+Q:O
aQ
R (ORI

Therefore,

k:pR*:@:f—l

Which 1s the steady state gain of the filter associated
with the problem.
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CONCLUSION

Researcher concluded that prediction of discrete-time
stochastic processes can be umquely sought by recourse
to the assumption that some or all of the parameters may
be unknown even though the structure of the differential
equation characterizing the system as well as the initial
and boundary conditions may be available. The output of
the data commumnication measuring nstrument 1s an
approximation of the true value. The computation of the
optimal estimates relied on convergence of the iteration
employed which was accomplished through sequential
filtration of the estimate. There are no useful convergence
results available in the existing literature for the plant
situation described in this study which do not operate on
the basis of data filtration. The plant itself 1s represented
by a stable, linear, parameter-dependent state space model
the solution of which is a Kalman filter. The most
interesting results of this study have been concerned with
the solution of the linear estimation problem and this was
considered 1 detail as 1t applies to communication
satellites driven by a stochastic white noise sequence.
Computation of the estimates relied on convergence of
the iteration employed which was accomplished through
sequential filtration
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