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Abstract: In this research, we formed a neural network to coding homogeneous iterated function system. Our

approach to this problem consists of finding an error function which will be minimized when the network coded

attractor is equal to the desired attractor. Firstly, we start with a given fractal attractor find a set of weights for

the networlk which will approximate the attractor. Secondly, we compare the consequent image using this neural

network with the original image with the result of this comparison we can update the weight functions and the

code of [terated Function System (IFS). A commoen metric or error function used to compare between the two

image fractal attractors is the Hausdorff distance. The error function gets us good means to measurement the

difference between the two images. The distance 1s calculated by finding the farthest pomt on each set relative

to the other set and returning the maximum of these two distances.
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INTRODUCTION

Fractals have been used for modeling natural images
(Mandelbrot, 1982). These natural images have common
properties such that the magnified local subsets look
identical to the whole set. This property is referred to as
self-similarity. This means that they usually contamn small
copies of themselves buried deep within the original.

On other hand, Neural networks have been hailed as
the paradigm of choice for problems which require
“Human Like” perception. A network could be performing
its function perfectly, responding correctly to every mput
that it is given, however its internal workings could still be
construed as a black box, leaving its user without
knowledge of what is happening internally.

MATERIALS AND METHODS

Preliminaries: Tn this study, we first summarize the
existing knowledge which is necessary for understanding

thus study.

Definition of homogeneous TFSs: We limit our
consideration to an TFS consisting of affine maps in the
complex plane. Within this important class, we waill
discuss particular [F3 with umiform (homogeneous)
contraction mappings and unequal probabilities. The TFS

is called a homogeneous TFS with equal probabilities or
homogeneous [FS3 for short (Abiko and Kawamata, 2000)
and defined by:

1C: Bz+y,: ) [Bl<1

Pz v.eC, pz%(nzo,..., N-1) (1)

T, £, (1. =0, .., N-1)

Where:

N = The order of the IF3

C = The set of all complex numbers

Bandy,= The deformation and  displacement
coefficients of the [FS's and a set of
coefficients, respectively

P = The probability which is equal to 1/N in our

definition of homogeneous TFS of order N
the reconstructed unage

A set of coefficients {fB, v,, ..., Y.} is referred to as
an IFS code. A fractal image generated by a homogeneous
IFS of order N 1s called a homogeneous fractal image of
order N.

Review of basic TFS properties: Let, H(C) denote aset
of images in the complex plane. Put W (z) = pz+y,(n=0,. .,
N-1). Then W (z): H (C)— H{C) defined by:
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Wa (z)=U W.(B)

n=0

for all BEH(C) is a contraction mapping on the Hausdorff
distance. Thus, W has a umique fixed pomt FeH(C)
which obeys:
F = F(W)
And 1s given by:
F = lim{W'(B))

1o

for any BeH{C) where W' denotes the ith iteration of IFS.
The fixed point is called the attractor of the IFS. Then the
fractal image is defined as the fixed point of a contraction
mapping on the space of the probability measures P(C).
(Specifically, if a set of probabilities is associated with the
homogeneous TFS, then the Markov operator M is defined
by:

M, (B)= (IV(W;(B))) 2)
n=0
Where:
veP(C) = The a probability measure
BeH(C) = Animage

Since, the Markov operator M is The contraction
mapping, successive application of the Markov operator
to an arbitrary initial distribution v is the converges in
distribution to the invariant measure cP(C) which obeys:

W(B)=(M,}{B) 3)
And is given by:
u=LmM (B) “4)

Furthermore, it 1s possible to show Bamnsley, 1988
that for any continuous function f, we have the
integration-type invariance condition:

f(Bz+y, )du(z) 4

Equation 2 is a direct consequence of the invariance
of the measure p as shown in Eq. 2 and the definition of
the Markov operator defined in Eq. 2.

The inverse problem of fractals: In several mathematical
fields, many problems have mverses, for example,
integration in a certain sense is an inverse problem for
differentiation, the problem of determining the forces
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under the action of which a particle moves along a given
curve 1s another example of an mverse problem in
dynamics of particles, etc. In an analogous way, the
problem of generating fractals by the use of TFS, calls for
an inverse problem, namely: For a given set in, construct
a suitable [FS whose attractor 1s the given set (to a certain
desired degree of accuracy) (Barnsley, 1988). The tackling
of this inverse problem as it stands is difficult if it is not
impossible. However, if the given set is self-similar, then
the required construction is almost straightforward. The
IFS can be found easily by making mathematical
translation of the property of self-similarity.

Collage theorem: Let (x+d) be a complete metric space, let
F=1r,_ £ bean IFS with contraction factor y and fixed
point T,. Let T be a closed subset of X. Let €>0 be any
positive number and suppose that the {f} are chosen
such that (Barnsley, 1988):

d(T,f(T))<se
Then:
d(T,TD)<%VxeX

RESULTS AND DISCUSSION

Using neural networks for coding homogeneous IFS
Design of neural network: The Hopfield network uses the
fixed points of the network dynamics to represent memory
elements. Networks studied by Giles ef al (1992) and
Pollack (1991) use the current activation of the network as
a state in a state machine while using the dynamics of the
network which is treated as an iterated function system
that is coding for its fractal attractor (Bamsley et al.,
1986). Melnik (2000), applying one of the transforms
on a random point for a number of steps, until it
converged.

There is still no general algorithm for fractals image
coding, the problem we want to solve in this study which
1s given a fractal attractor, find a set of weights for the
neural network which will approximate the attractor. A
neural networlk, Fig. 1 consists of two input units and two
output units and six weights for all transform (IFS)
represent scalar function The transform 1s selected
randomly and all mput neurons receive a coordinate of
each point of fractal image, one neuron for x coordinate
and the other for y coordinate for each transform. And
return as x and y output, consists of TanSigmoid function
(Hutchinson, 1981; Melmk, 2000) with a bias (Fig. 2). The
equations of x and y output are given as:
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Fig. 1: Neural network for the number N of iterated
function system
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Fig. 2: TanSigmoid function
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WX=X, W, +Y, W_+Wx
And:
WY =X, W, +Y, W_+W,

And W, is the weight function from 1 input to j output
neuron and W, 1s the bias of 1 mput neuron. At the last of
this operation for large number of points with random
iterations, we get an image. Of course this image is
different in general with the image we want to find the
Iterated Function System (IFS) of it. Then we must update
the weight functions of the neural network to get better
approximation to the target image.

This change of the weight function 1s depending with
the measure of the difference between the two mmages.
This difference 1s knownas error function which must
minimize with every update of weight functions.

The error function used to compare fractals
attractors 1s the hausdorft distance (Barnsley, 1988,
Barnsley et al, 1986; Rashad, 2003). The distance
between two images A and B is calculated as following:
We first calculate the distance between the element «
and the set B which 1s:

d{o, b) = min{|| b-a|; b= B}

Then, the distance between A and B 1s:

d(A, B} :max{d(a, b}, ae A}
Also, the distance between B and A is equal to:

d{B, A) = max{d{b, A);be B]
And then the distance between two sets is:

H(A, B) = max{d{A, B), d(B, A)}

Our error function is defined as:

B(T. A) = (T (x. ) AP ¥ ((x.y). T(4)

Where:

T, (x,¥) = The image of the point (x, ¥) the with respect
to the transform T,
T(A) = Theall immage of A

The value of the error function with respect to the
iteration of neural network 1s shown in Table 1. Figure 3
shows the relation between error and iteration of neural
networl.
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Table 1: Relation between iterations and error

Tterations Errors

1 2.227904056 7240800
18 0.0094218704904396
93 0.0044749022167292
50 0.0035019536989585
100 0.0017456835061626
135 0.0012872666940581
150 0.0011564271467524

CONCLUSION

We are mnterested in different ways to tease neural
networks open to analyze what they are representing, how
they are “thinking”. In this research, we present a novel
algorithm to introduce the code of the iterated function
systemn which generates a fractal image. Its features being
that it 1s exact fully describing a networks function,
concise, not an incremental collection of approximations
and direct mapping a network’s input directly to its
output.

RECOMMENDATIONS

This research focused on the mverse problem of
fractals with related to iterated function systems for
3-dimension linear fractals. Solving the inverse problem of
non-homogenous 3-Dimension fractals remains an open
problem.
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