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Abstract: We propose in this paper an application of
fractional-order PIλ controller as an alternative to solve
some of the control problems that can arise. It aims to
apply the analytical tuning procedure to control the heat
flow systems. The system modeled by first order system
involving  time  delay,  this  kind  of  systems  whose
closed-loop characteristic equation are fractional order
quasi-polynomials. Using the proposed method, the entire
stability region of PIλ controllers is obtained and
visualized in the plane (Kp, Ki, λ). Simulation and
experimental results on thermal system are given to show
the effectiveness of this type of controllers and this tuning 
rule.

INTRODUCTION

Several engineering systems and industry processes
are modeled using fractional calculus which can be
defined  as  a  natural  extension  of  the  classical
mathematics (Tenreiro, 1997; Monje et al., 2010).
Usually, the  famous tools  to model  dynamic systems  at
a macroscopic level are integrals and deriatives, hence, 
the earliest theoretical contributions related to the
fractional derivatives and integrals were made by Euler,
Liouville and Abel (Monje et al., 2010). Also, it should be
stated that the fractional order representation is more
adequate to describe real world systems than those of
integer order models (Tan et al., 2009). Since, that time,
many studies exhibit that differ-integral operators  may 
be  applied  advantageously  in  diverse areas.  Especially, 
in  control  theory  and  applications, it is extensively
applied and researchers find many opportunities to
develop new directions for research in fractional-order
control.

Recently, with the development of fractional calculus
theory, the implementation of fractional order controllers
is become feasible. According to researchers by Xue and
Chen (2002)  are classified in four categories, Oustaloup’s
CRONE controller and its three generations, fractional
PID controllers or Podlubny’s PIλDµ (Podlubny, 1999),
FO lead-lag compensator (Monje et al., 2010) and FO
phase this kind of controller. Some practical application
studies are presented by Petras and Vinagre (2002),
Bhambhani and Chen (2008). The water level control was
studied by using PIλ controller in Bhambhani and Chen
(2008) where some numerical simulations and
experimental results were given. In Petras and Vinagre
(2002) the temperature control of heat solid modeled
using  fractional  order  calculus  was  made,  respectively
by using conventional PID and PIλDµ controllers.
Traditional PID controller, proportional control and
On/Off  control  are  usually  used  for  temperature
control.   In   this   study,    as   a   new   control   scheme
for  temperature   regulation,   so,   we   proposed   using 
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fractional-order PIλ controller for a more accurate
temperature profile. Also, the fractional order controller
could be advantageous for temperature control, since,
there are frequently variations in parameters in heat flow
systems and most of desired specifications which are not
readily achieved simultaneously by traditional PID
controller.

MATERIALS AND METHODS

Mathematical background: There are several definitions
for fractional order integral and differential calculus,
however the most frequently used are the Grunwald-
Letnikov (GL), the Riemann-Liouville (RL) and the
Caputo definitions (Monje et al., 2010; Caponetto et al.,
2010a, b; Podlubny et al., 1997). The GL definition is
given by:
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where, a and t are the limits of the operation, r0R and [.]
means the integer part.

The Riemann-Liouville RL fractional integral of
function f(t) is defined as:
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Where, (n-1<r<n). The Caputo fractional integral is
defined as:
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The continuous integro-differential operator is
defined as:
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Fractional integrals and derivatives also appear in the
theory of control of dynamical systems when its is
described by a fractional differential equation.

Fractional order integrals:
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Fractional-order derivatives: The fractional-order
derivative is not a fractional order integral by a direct
substitution α by -α. It provide an excellent instrument for
the description of memory and hereditary properties of
various processes (Caponetto et al., 2010a). The fractional
derivative of order of function f(t) can be defined as:
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Fractional quasi-polynomial: As a preliminary step,
we define the fractional quasi-polynomial as follows:
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α0<α1<, ..., <αn are generally fractional power, aij are real
numbers and L1<L2<, ..., Ln represent time delays. There
are two classes of fractional quasi-polynomials:
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r(t) e(t) u(t) y(t)
G(s)C(s)

C Retarded-type fractional quasi-polynomials if deg
q0(s)>deg qi(s) for all i = 1, 2, ..., n

C Neutral-type fractional quasi-polynomials if deg q0(s)
= deg qi(s) for at least one i = 1, 2, ..., n

Controller design concept: The aim of this section is to
present the system which will be controlled by a fractional
order PI controller and to present the design of the
fractional controller. The first order time delay systems
can be described by:
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Our tuning strategy, is based on Hermite-Biehler
theorem and the Pontryagin condition to determine the Kp

and Ki parameters. The fractional PIλ controller transfer
function C(s) is given by the following equation:
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In Fig. 1, r(t) is the reference input or the setpoint
signal, e(t) is the error, u(t) is the control and y(t) is the
output signal. Consequently, the control input of the PIλ

controller is:
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where, Dt
!α is the fractional differential/integral operators.

The control design method proposed in this study is based
on a Hermite-Biehler and Pontryagin theorem which
consist on interlacement property of the real roots of the
polynomial characteristic.

The closed-loop characteristic polynomial of a first
order time delay system is given by:
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Replacing the term Ls in the previous expression by
z we obtain:
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We consider: z = jω.
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Fig. 1: Closed-loop control of a time-delay system
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The expression (Eq. 21) can be rewritten:
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Clearly, the controller parameter Kp only affects the
imaginary part of δ i(ω) whereas both  parameters  Kp and
Ki appear in the real part δ r(ω). In order to solve our
stabilization problem, we need first to determine the range
of Kp for which a solution to the PIλ stabilization problem
of a closed-loop stable plant is given. According to
Pontryagin Theorem, δ i(ω) has only real roots for every:

p u u+K [K , K ]

where, Ku and Ku+ are respectively the lower and the
upper bound of Kp range. The successive step is to
establish the ranges of the values of Kp and Ki that fulfil
the interlacing condition between the roots of δ *

i(ω) and
δ *

r(ω).
However, we present our theorem Hafsi et al. (2013)

useful to compute the stability region of first order first
order system with time delay. Based on the first property
of Hermite-Biehler (Silva et al., 2002; Guillermo et al.,
2001; Hafsi et al., 2015) which consist that all the roots of
the polynomial characteristic of the closed loop equation
are real.

Theorem 1: Hafsi et al. (2013), we consider a first order
plant given by the following transfer function:

142



Int. J. Syst. Signal Control Eng. Appl., 10 (6): 140-146, 2017
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where  the  parameters  T,  L  and  K  are  positive. We
can  determine  the  set  of  all  stabilizing  (Kp, Ki)  values
for  the  given  plant  using  the  fractional  order  PI 
controller (PIλ):
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The stabilizing set of parameters Kp values for a
closed-loop stable plant is given by:
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the two previous equations:
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Once the Kp range established, we determine Ki as
follows:
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ωj, j = 1, 2, 3, ... are the roots, arranged in ascending order
of magnitude of δ *

i(ω).

Application to a thermal system: Practical experience
play an important role in demonstrating the accuracy of
the new controller PIλ for different for values of λ.

Modelling and identification: Temperature control arises
in diverse engineering fields, but note that it  is  very 
difficult  to  find  a  precise  model of transfer function of
the output temperature change from the power input, thus,
we use an approximated integer-order transfer function
for heat flow while a fractional PI controller is used to
regulate the temperature profile.

Figure 2 shows the set of test equipment: computer,
AD/DA converter (NI-USB-6009 data acquisition
module) and thermal system. The thermal system includes
aluminium rod, of 41 cm length and 2 cm section, heating
resistor, PWM converter and a sensor to measure the
temperature. The system block diagram is presented in
Fig. 3.

The input signal of the thermal system is a thermal
flux generated by a heating resistor which is controlled by
a computer with AD/DA converter. The controller and the
heating resistor are separated by a dimmer phase angle
(PWM converter). The output signal of this system is the
aluminium rod temperature measured by an LM35DZ
sensor. Then, this signal is amplified to obtain an output
voltage varying from 0-5 V.

In order to determine the thermal system model, we
have applied to the heating resistor a pseudo random
binary sequence given by Fig. 4. This last depicts also the
corresponding temperature at distance d = 6 cm of the
aluminum rod extremity. We note that the sample time is

Fig. 2: Real schema of the thermal system
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Fig. 3: Synoptic schema of the closed loop of thermal system

Fig. 4: Identification data

equal to 10 sec. Through a simple system identification
process, the thermal system can be approximately
modeled by the following transfer function:

  LsK
G s e

Ts 1




where: the delay time L = 12.2, response time T = 164.22
and the static gain K is equal to 0.8667. If the system
model is determined, it is easy to design a controller to
control the system.

Simulation results: Extensive simulation results are
included to illustrate the simple yet practical nature of
these type of controller. This study presents some
simulation results to validate the design method.

In view of Theorem 1, an algorithm to determine the
stabilizing set of the fractional PI controller parameter for

the plant  is presented as follows:  12.20.8667
G s e

164.22s 1




Algorithm:
Step 1. Choose fractional integral of order λ
Step 2.Compute the Kp range using first part of the theorem 1
Step 3. Calculate the Ki range for each  Kp computed  in  step 2
Step 4. Return to step 1

Fig. 5: Stability region of the thermal system for 0<λ<1

Fig. 6: Step responses of PIλ controller where 0<λ<1

By sweeping over the fractional order λ range and
using the algorithm presented earlier, we obtained the
admissible set of (Kp, Ki) for each λ  value.  By  varying 
the  value of the non-integer order λ in the range of [0.1:
0.1: 1.9], the stability regions of each PIλ controllers are
plotted   in the (Kp, Ki, λ) plane. Figure 5 and 6 shows the 
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global stability regions obtained using λ0[0.1: 0.1: 1]  
and λ0[1.1: 0.1: 1.9] values for the fractional order PIλ

controllers.
Shown in 6 the step responses of the closed-loop

systems for different values of λ. In fact, for λ   [0.1: 0.1:
0.9] and for a fixed point of (Kp, Ki) in the stability region
(5)  correspondingly  to  each  λ  values.  So,  we  constate
that the effects of the integral action is to eliminate the
steady-state error. In fact, for a small values of λ such as
λ = 0.1, λ = 0.2 the output does not converge to the
reference value and when this fractional order integral
increase the steady-state error decrease. It is observed that
the response of PIλ controlled system show a fairly better
response in comparison with the case of the PI0.3

controller. Also, it is interesting to note that the fractional
order integrator λ which is an extra degree of freedom
contribute   to   the   performance   improvement   of   the

Fig. 7: Stability region of the thermal system for
1.1<λ<1.9

Fig. 8: Step responses of PIλ where 1.1<λ<1.9

closed-loop  system  by  making  the  step  responses
reveal   that   the   steady-sate   error   decreases   as   the 
order  λ  increases.  In  Fig.  7  and  8  the  step  responses 
of the model:

  12.20.8667
G s e

164.22s 1




corresponding to the thermal system controlled by the
fractional controller PIλ where λ = 1.1, 1.2, 1.3, 1.4, 1.5.
are   represented.   We   observe   from   this   figure   that 
the  output  of  the  model  converge  to  reference  input
which  confirm  the  effectively  of  this  kinds  of
regulators.

RESULTS AND DISCUSSION

Experimental results: In order to illustrate the
effectiveness the approche given by the theorem (1), we
consider the thermal system given  by Fig. 2-4.

In  fact,  the  thermal  system  is  defined  as  a  first
order system with time delay. The evolutions of the
reference signal, the measured temperature (output
signal),control signal obtained with a fractional order
controllers PI!0.9 and PI!1.2 are represented respectively in
Fig. 9, 10.

From Fig. 9, we observe a small steady-sate error
which  cost  on  the  weak  value  of  the  integrator  order
(λ = 0.9) which confirm the simulation results given in
Fig. 6. Whereas  for  the  PI!1.2  controller,  we  remark 
that measured temperature meets the desired requirements
and  provide  a  small  variation  which  gives  a  null
steady-sate error.

Fig. 9(a, b): Closed-loop results obtained with PI!0.9

controller where Kp = 10 and Ki = 0.7
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Fig. 10(a, b): Closed-loop results obtained with PI!1.2

controller where Kp = 15 and Ki = 0.5

CONCLUSION

In conclusion, simulation and experimental results
show that the closed-loop system can achieve favorable
dynamic performance.

In this study, fractional order proportional integral
controller is designed for temperature profile control of a
metallic rod. The FO-PI controller tuned by our analytical
method based on Hermite-Biehler theorem gives a strong
performance. Also, from experimental and simulation
results, it is observed that the designed fractional order
controller works efficiently.

RECOMMENDATION

In our future research efforts, we would like to
consider a fractional model uncertainty problem which
will be controlled by a robust fractional order PIλ and
PIλDµ controllers.
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