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Abstract: The study suggests analytical expressions for
algorithms of optimal linear prediction of a random
process relyingon a sample of the process values and
values  of  its  derivatives  at  a  previous  instant  of  time.
I also  investigate  relative efficiency of such algorithms
in comparison to transversal algorithms, exemplified by
a stochastic process with a finite correlation function.

INTRODUCTION

Let us consider the algorithm and efficiency of linear
prediction of a stationary differentiable random process
ξ(t) with a correlation function R(τ) = σ2ρ(τ) where σ2 is
random process variance and ρ(τ)-a normalized
correlation function. Wiener-Hopf transversal filtering
(Widrow and Stearns, 1985) implies the use of sample
||X|| = [ξ(t), ξ(t-Δ), ..., ξ(t-nΔt)]T where T-transposition
operation, Δt-a time interval between random process
counts, n-integer. Sample ||X|| is assumed to be used for
process ξ(t+θ) forecast evaluation where θ-prediction
look-ahead time. On  the  other  hand,  for  the forecasting
we are allowed to use both samples ||X|| and ||Y|| = [ξ(t),
ξ’(t), ..., ξ(n)(t)]T or a sample of the random process and n
of its first derivatives which implies random process
different ability. Hard warily such sampling is attained via
differentiating circuits (Faulkenberry, 1982) or by the
well-known finite difference procedure. In this study we
will build forecasting algorithms and compare the
efficiency of samples ||x||и||Y|| in linear Wiener-Hopf
filtering.

MATERIALS AND METHODS

The most accessible method of prediction is linear
forecasting or assessment of futurities using linear
regression like:

(1)       0 1 nt+ /t k t +k t- t , ..., k t-n t K X          

where, ξ(t+θ/t)-prediction of realization ξ(t) for the time
instant t+θ from time instant t, vector, ||K|| = ||k0, k1, ...,
kn|| components of vector ||K|| depending on forecast
look-ahead time θ, on correlation properties of a random
process and delay time interval Δt. Similarly when using
the values of variables:

(2)          Tn
0n 1n nmt+ /t w t +w ' t , ..., w t W Y        

where, vector ||W|| = ||w0, n, w1, n, ..., wn, n|| Weighting
factors of vector ||W|| are defined as: wij where i-order of
realization derivative, j-size of the sample used for
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prediction. Optimal factors wij for vector ||W|| are
dependent on forecast look-ahead time θ and correlation
properties of the random process. Both types of filtering
are filters having impulse response that is finite
temporally. In contrast to recursive filters, non-recursive
ones are essentially stable (Widrow and Stearns, 1985).
According to Widrow and Stearns (1985), the optimal
wiener vector of weighting factors is defined as follows:

(3)-1 T
opt| G || || R || || P || 

where, ||R|| is a cross variance matrix of the elements of a
sample of a random proces’s previous values ||X|| = ξ(t),
ξ(t-Δt), ..., ξ(t-nΔt)||, from which it follows that ||Gopt|| =
||Kopt||  or  a  cross-variance  matrix  of  a  sample  of  the
values and derivatives of the random process ||Y|| = ||ξ(t),
ξ’(t), ..., ξ(n)(t)||, then ||Gopt|| = ||Wopt||. Vector ||P|| is a
row-vector of cross-variance of the predicted value of the
realization of random process ξ(t+θ/t) and sample
elements ||X|| or ||Y||. Minimal forecast evaluation
variance ξ(t+θ/t) for samples ||X|| or ||Y|| can be defined,
accordingly as:

(4)    -1 T2 2 2
optt+ /t /Y t - P R P - P K          

or:

(5)    -1 T2 2 2
optt+ /t /X t - P R P - P W          

where, σ2-variance of process ξ(t). We can determine
coefficients ||K|| = ||k0(θ, Δt), k1(θ, Δt), ..., kn(θ, Δt)|| for a
transversal filter in the form of ||Kopt|| = ||R||-1||P||T where:

(6)
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Matrix ||R|| and vector ||P|| when using sample ||Y||,
can be constructed relying on random process overshoot
theory (Tikhonov and Khimenko, 1987). Leaving out
intermediary mathematical developments, we obtain ||R||
and ||P|| used for vector Y(t) forecasting up to the fourth
derivative inclusive as follows:
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(9)             3 42P , - ' , " , - ,           

As can be seen from Eq. 8, the correlation matrix is
sparse with many zero-elements. Using Eq. 3 we can
obtain prediction algorithms from sample ||Y|| in an
explicit form, up to the two highest derivatives inclusive:

(10)     t+ /t t     
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Estimate variance ξ(t+θ/t) using Eq. 5 can be
obtained if we use the sample of random process values
up to its two first derivatives in the following form:

(13)     22 2t+ / t 1-            
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     

As we can see from expressions Eq. 10-15, the
forecast algorithms and prediction dispersion are
dependent not only on random process correlation
properties. Expressions Eq. 13-15 demonstrate how
forecast evaluation variance goes down with an increase
in the size of the sample used for prediction. It may be
observed that expressions Eq. 10, 13 are widely known
from literature. Expressions Eq. 13-15 can be obtained if
we consider prediction ξ(t+θ/t) as a parameter of a normal
stochastic process and find Fischer information for it
proceeding from the resulting sample of a normal random
process. Let us now write normal two-dimensional
probability density for values ξ(t), ξ(t+θ)  as follows:

(16)

   

        T1
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where |R|-determinant of correlation matrix ||R||, ||R||-an
inverse matrix for correlation matrix ||R||:

(17)
 

 
2 1

R
1

 
 

 

Further on, by finding fischer information for a
sample containing one element ξ(t) relative to parameter
ξ(t+θ), we have:

(18)   
      
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In 1t+I t
1-

f t , t+

 
                         

where μ(x) mathematical expectation of value x. By
inverting the Fischer information, we will have forecast
evaluation variance ξ(t+θ) as per rao-cramer inequality
and according to expression Eq. 13. In a similar way, by
writing normal co-density of probability for random
values ξ(t), ξ’(t), ξ(t+θ) and having in mind that matrix
||R|| for these values can be found as:

(19)
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we obtain Fischer information in sample ||Y|| = [ξ(t), ξ’(t)]
in relation to parameter ξ(t+θ) in the form that follows:

(20)
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By inverting the Fischer information, we obtain
forecast evaluation variance ξ(t+θ) as per Rao-cramer
inequality and in accordance with expression Eq. 14.
Properly speaking, this only confirms the well-known fact
that linear treatment is optimal for a normal random
process.

Figure 1 shows dependence of normalized dispersion
of forecast evaluation l = σ2 lξ(t+0/t)/ξ(t), ..., ξ(n)(t)m/σ2 for
a  random  process  with  correlation  function  R(τ) = σ2

ρ(τ) =  σ2 ρ(τ) = σ2 sin (ππ)/(ππ)on an increase in the size
of sample ||Y|| from 1 up to 5 (curves 1-5, respectively).
Thus, for example, curve 1 corresponds to a sample of one
random process count, curve 2 corresponds to a sample of
the value of the random process and its first derivative and
so,  forth  while  curve  5 corresponds to a sample from a
count of the random process and the first four derivatives.

Fig. 1: Forecast dispersion l = σ2[ξ(t+θ/t)/ξ(t), ..., ξ(n)(t)]/σ2

Process R(τ) = σ2 sin (ππ)/(ππ) with a correlation function
has finite spectral density and efficient width of random
process spectral density Δf = 1 Hz which allows us to
re-calculate-using a simple scaling procedure-results for
the processes with another spectral density width for other
forecast look-ahead times. A process with such a
correlation function is widely used to illustrate random
process overshoot theory. It is a linearly singular
(Rozanov, 1990) or “degenerate” process and can be
reconstructed by way of lineal transformation along the
whole time axis. We now shall give the condition for
linear singularity of a random process. If spectral density
of a random process becomes zero on a positive measure
set or if the following condition is met:

(21)
 
2

-

log S
d -

1+






  



where, S(ω)-spectral density of a random process, then
stochastic processes with spectral density S(ω) are
singular (degenerated). Such processes with finite spectral
density are believed to be farther from physical reality
then, for instance, linearly regular processes. The
condition of linear regularity of a random process is
presented in the following form:

(22)
 
2

-

log S
d -

1+






 

 

We can prove that linearly regular properties belong,
for example, to random finitely differentiable processes.
Correlation functions of such processes are shown by
Tikhonov and Khimenko (1987). It seems reasonable to
compare the efficiency of prediction filters based on a
sample of a random process and its derivatives, to that
using a sample of previous values of a random process as
is the case of transversal filtering. The indicator in
question is relative efficiency factor e(Δt) for samples ||Y||
and ||X|| of the same size:

(23) 
 
 

2

2

t+ / Y
e t

t+ / X

     
    
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Fig. 2: Relative forecast efficiency at ρ(τ) = sin (πτ)/(πτ)

In Fig. 2, we can see graph e(Δt) describing a random
process with a normalized correlation function ρ(τ) =
sin(ππ)/(ππ) for a chosen forecast look-ahead time θ = 1.
In Fig. 2 curves 1-4 correspond to dependence e(Δt) for
different types of sample. Note that graph plotting was
based on the same sample size of ||Y|| and ||X||,  i.e., 
sample ||Y|| = [ξ(t), ξ’(t)] was compared with c sample
||X|| = [ξ(t), ξ(t-Δt)] and so, forth. Curve 1 corresponds to 
e(Δt) for samples ||Y|| = ||ξ’(t)||, ||X|| = ||ξ(t), ξ(t-Δt)||, 
curve 2 corresponds to e(Δt) for ||Y|| = ||ξ(t), ξ’(t), ξ”(t)||,
||X|| = ||ξ(t), ξ(t-Δt), ξ(t-2Δt)||, curve 3 corresponds to
e(Δt) for ||Y|| = ||ξ(t), ξ’(t), ξ”(t), ξ(3)(t)||, ||X|| = ||ξ(t), ξ(t-
Δt), ξ(t-2Δt), ξ(t-3Δt)|| and curve 4 corresponds to e(Δt)
for ||Y|| = ||ξ(t), ξ’(t), ξ”(t), ξ(3)(t), ξ(4)(t)||,  ||X|| = ||ξ(t), ξ(t-
Δt), ξ(t-2Δt), ξ(t-3Δt), ξ(t-4Δt)||. From graphs in Fig. 2 it
is obvious that sample  ||Y|| = [ξ(t), ξ’(t), ..., ξ(n)(t)] is more
efficient than sample ||X|| = ||ξ(t), ξ(t-Δt), ..., ξ(t-nΔt)|| of
an adequate dimension, particularly, so if both the
dimension and time interval  are increased. It can be
demonstrated that at Δt60 the efficiency of both samples 

is similar as there is similar amount of information in
sample ||X|| = ||ξ(t), ..., ξ(t-Δt)||  as in sample ||Y|| = [ξ(t),
..., ξ(n)(t)]  and prediction algorithms for both do converge.

RESULTS AND DISCUSSION

Wiener-Hopf linear filtering allows us to forecast a
random process relying on a sample from its previous
values (transversal filtering) or on a sample from the
values of the random process and its derivatives. In the
latter case, the correlation matrix of a random process is
sparse which may have significance for elaborating
adaptive filtering algorithms when the correlation matrix
is being evaluated and the algorithm of direct matrix
inversion used. If the time between random process
counts is reduced, both algorithms and their efficiencies
converge. Such prediction algorithms are optimal, first
and foremost, for a normal random process; however, they
can also be used to forecast stochastic processes with
different probability densities.

REFERENCES

Faulkenberry, L., 1982. An Introduction to Operational
Amplifiers with Linear IC Applications. Jon Wiley &
Sons, New York, USA.,.

Rozanov, Y.A., 1990. [Stationary Random Processes].
Nauka Publishing, Moscow, Russia, (In Russian).

Tikhonov, V.I. and V.I. Khimenko, 1987. [Random
Process Overshoots]. Nauka Publishing, Moscow,
Russia, (In Russian).

Widrow, B.W. and S.D. Stearns, 1985. Adaptive Signal
Processing. Prentice-Hall, New Jersey, USA..

120

 
 

1.0 
 
 
 
 

0.5 

1

2

3
4 

0                0.2              0.4              0.6               0.8                1

Δt

e 
(Δ

t)
 


