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Abstract: In this study, I consider models of stochastic
process correlation functions and, by way of numerical
calculation, prove that the efficiency of optimal linear
interpolation and forecasting is determined by the existing
highest derivative of a stochastic process. I also set out 
the results of numerical calculations pertaining to
efficiency assessment of interpolation and forecasting of
finitely differentiable stochastic processes with correlation
functions commonly used in practice for Wiener-Hopf
filtering.

INTRODUCTION

Needless to state once again how important it is to
develop methods for optimal linear forecasting and
interpolation of stochastic processes and assessment of
their efficiency, by which we should understand
forecast/interpolation result dispersion for a stochastic
process. When using the Wiener-Hopf filter (Widrow and
Stearns, 1985) that shapes output signal ξ as a linear
regression of a sample  ||Z|| = ||ξ1, ξ2, ..., ξk|| or:
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where vector ||W|| = ||w1, w2, ..., wk|| are coefficients; the
optimal vector of these coefficients is defined as:
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where, ||R|| is the matrix of cross-correlation of sample
components ||Z|| = ||ξ1, ξ2, ..., ξk||, ||P||T is the column

vector of cross-correlation between signal ξ and sample
components ||Z|| = ||ξ1, ξ2, ..., ξk||. Minimal variance of  ξ
is obtained as:

(3)  -1 T2 2/ Z - P R P    

where σ2 is stochastic process variance. In real contexts,
it is inconceivable to assume the finiteness of spectral
density of a stochastic process under scrutiny; at the same
time, sample dimension for forecasting and interpolation
purposes is significantly limited by equipment
functionality. Whence it follows that we must admit
residual variance of the results of forecasting or
interpolation of a stochastic process. To know
probability’s multivariate density of a stochastic process
is also impossible in many a case; however, for optimal
linear forecasting or interpolation of stochastic processes
the knowledge of their spectral-correlation properties is
sufficient. For convenience of description (Tikhonov and
Khimenko, 1987), we shall designate the stochastic
process η(t) and its implementation in the similar way as 
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Table 1: Normalized correlation functions and spectral densities
Correlation functions
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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ξ(t). Assuming that ξ(t)is stationary with dispersion σ2 and
correlation function R(τ) = σ2ρ(τ) where, ρ(τ) is the
normalized correlation function, we shall consider various
spectral correlation properties of stochastic processes in
the form of a (Table 1).

In Table 1, we can see normalized correlation
functions ρ(τ) and spectral densities S(ω) of stochastic
processes most commonly used in practice. Besides this,
in Table 1 there is -ρ”(0), i.e., the second spectral moment
of a stochastic process (Tikhonov and Khimenko, 1987)
and Δfý-effective width of spectral density of a random
process.

Stochastic process No. 1 with normalized correlation
function ρ(τ) = e-α|τ| is not differentiable albeit continuous.
Most commonly such correlation functions are applied to
describing simple markovian stochastic processes.
Random process No. 2 with normalized correlation
function  is d ifferentiable  only  once  whereas  that  of
No. 3-twice, process No. 4 can be differentiated three
times (Tikhonov and Khimenko, 1987). Implementation
of process No. 5 with correlation function ρ(τ) = cos(ω0τ)
is described as ξ(t) = A sin (ω0t+n) where A-amplitude,
ω0-constant frequency, n-random  value  with  probability 
coefficient p(n) = 1/2π at -π#n#π. Such a process is
differentiable arbitrarily many times. Processes with
correlation functions Eq. 6 and 7 are also differentiable
arbitrarily many times. However, the process  with 
normalized  correlation  function  ρ(τ) = exp(-ατ2) exhibits

spectral density equal to zero only at ω60 whereas the
process with normalized correlation function ρ(τ) = sin
(ωτ/2)/(ωτ/2) has ω-axis finite spectral density. One can
easily recognize that the question of whether infinitely
differentiable stochastic processes do exist is more than
doubtful as it lets calculation of their implementation for
infinite time both ways of the axis, thus leading us to the
notion of linear singularity (Rozanov, 1990) or random
process degeneration.

For a random process whose normalized correlation
function ρ(τ) = cos(ωτ) is indicated by Eq. 5 in Table 1,
when using sample ||Y|| = ξ(t),ξ(t)|| to forecast
implementation ξ(t+θ) at calculating regression
coefficients relying on (Tikhonov and Khimenko, 1987)
we’ll construct matrix ||R|| and vector ||P||:
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By inverting matrix Eq. 4 we have regression
coefficients as follows:
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Therefore, if we use sample ||Y|| = ξ(t), ξ(t)|| for
forecasting and if the normalized correlation function is
ρ(τ) = cos(ωτ) the forecasting algorithm can be
represented as:

(8)         sin
t+ /t cos t - + t


          

We may observe that for concrete implementation
this algorithm lets to unambiguously calculate future
implementation of a stochastic process for any forecast
time θ. Thus, for example, given a random phase n = 0
and mathematical expectation μ = 0, implementation of
the stochastic process will look like ξ(t) = A sin (ω) while
implementation forecast -ξ(t+θ/t) = A sin [ω(t+θ)]. If the
second derivative implementation of a stochastic process
ξ(t) is used, matrix ||R|| will become degenerated, its
determinant equal to zero and the forecast algorithm
unobtainable.

The whole matter looks more complicated if for the
interference model we choose a random process that is
finitely differentiable. As numerical studies show, the
maximum dimension of the forecasting filter is
determined by the existing highest derivative of a
stochastic  process.  So,  if  a  random  process  is  totally
non-differentiable, then all information on its past and
future is defined by only one of its values. An example of
it  is  a  process  with  normalized  correlation  function 
ρ(τ) = e-α|τ| (a simple Markovian process). If a random
process in differentiable once then the maximum sample
dimension is equal to 2 process samples; if process
differentiability takes the value of 2 then the maximum
sample dimension is equal to 3 process samples and so
forth. Subsequent expansion of sample size brings about
no reduction in forecast dispersion. Consider the example
of a triply differentiable random process with a
normalized correlation function:

(9)     32 -2 1
1+ + + e

5 15
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As correlation functions of finitely differentiable
random  processes  are  not  explicitly  differentiable, 
then  it  seems  reasonable  to  consider  its  value  sample
||X|| = ||ξ(t), ξ(t-Δt), ..., ξ(t-nΔt), ..., ||. To obtain vector (2)
of optimal factors ||Wopt|| from the sample vector ||X|| and
the forecast value ξ(t+θ) is not a problem. Now we’ll plot
graphs of the dependence of normalized forecast variance
of a stochastic process on forecast time interval θ in the
following form:

(10) 
     2

2

t+ / t- t , ..., t-n t
l
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

Fig. 1: Forecast variance at ρ(τ) = [1+αlτm + 2/5(ατ)2 +
1/15(α|τ|)3]e-α|τ|, (1) For sample ξ(t), (2) For sample
ξ(t), ξ(t-Δt), (3) For sample ξ(t), ξ(t-Δt), ξ(t-2Δt)
and (4) For sample ξ(t), ξ(t-Δt), ξ (t-2Δt), ξ (t-3Δt)

where,  σ2[ξ(t+θ)/ξ (t), ξ(t-Δt), ..., ξ(t-nΔt)]  is  forecast
ξ(t) dispersion  for time point t+θ of time point t, Δt-time
interval between sample units, n-integer. As other studies
have demonstrated, time interval Δt must be minimal for
ensuring minimal forecast dispersion. Let us now choose
parameter α = 32/5 for this correlation function, then the
effective width of random process spectrum is Δfý = 1.
Figure 1 shown dependence of normalized forecast
dispersion l(θ) for a random process with a normalized
correlation function Eq. 9. The calculations were done for
Δt = 0.01. As can be seen from Fig. 1, no increase in the
efficiency of the forecast filter is observed when se
employ samples of higher than the fourth order.

In this way, random processes that are finitely
differentiable can be predicted by transversal filters while
the order of such a transversal filter is determined by the
order of the existing highest derivative of the random
process.

Forecasting filter sample dimension for infinitely
differentiable stochastic processes (correlation functions
No. 6 and 7 in Table 1) is limited due to other
considerations. Thus, when choosing a normalized
correlation function of gaussoide type ρ(τ) = exp (-ατ2), 
the dimension of sample in forecasting should not be in
excess of 3-4 as further increase in its size does not result
in any considerable gain in forecasting efficiency. If the
normalized correlation function ρ(τ) = sin(ατ)/(ατ) is
selected, the dimension of the sample is limited by
quantizing noise generated by analog to digital conversion
(Bodrenok, 1997).

The same sort of considerations hold for interpolating
of random processes. It is known (Khurgin, 1971) that if
both the random process value and its derivatives are used
for interpolation, then the interval between process
samples may be increased in proportion to the order of the
involved derivatives. For practical engineering tasks, as a
rule, what is the focus of interest is interpolation of a
stochastic  process  within  a  chosen  time interval. In this 
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Fig. 2: Interpolation variance for ρ(τ) =  e-α|τ| иρ(τ)[1+α lτm
+ 2/5(ατ)2 + 1/15 (α|τ|)3]e-α|τ| (1) For ρ(τ) = e-α|τ| and
sample ||X|| = ||..., ξ(t0-Δt), ξ(t0), ξ(t0+T),
ξ(t0+T+Δt), ...||, (2) For  ρ(τ) = [1+αlτm +2/5(ατ)2

+ 1/15(α|τ|)3 e-α|τ| and sample ||X|| = ||ξ(t0), ξ(t0+T)||,
(3) For sample ||X|| = ||ξ(t), (4) For ||X|| = ||ξ(t0-
2Δt), ξ(t0-Δt), ξ(t0), ξ(t0+T), ξ(t0+T+Δt),
ξ(t0+T+2Δt) and (5) For sample ||X|| = ||ξ(t-3Δt),
ξ(t0-2Δt), ξ(t0-Δt), ξ(t0), ξ(t0+T), ξ(t0+T+Δt),
ξ(t0+T+2Δt), ξ(t+T+3Δt)||

case, at both ends of the interval it is reasonable to take
the sample out of the value of the process and its
derivatives, or out of several values of the random
process. For random processes with normalized
correlation functions marked 6 and 7 in Table 1 this issue
has been extensively studied. Suppose, interpolation is
being carried out on t0#t#t0+T time interval, consequently
interpolation takes place on interval t0+θ where θ denotes
universal time.

Let  us  consider  the  sample  ||X|| = ||, ..., ξ(t0-2Δt),
ξ(t0-Δt), ξ(t0), ξ(t0+T), ξ(t0+T+Δt), ξ(t0+T+2Δt), ..., ||. In is
not a hard task to construct matrix ||R|| using sample
vector  ||X||  in order to obtain vector ||P|| as that of mutual
correlation ξ(t0+θ) and components of vector ||X|| and
adducing   them  here  is  not  worthwhile.  From
expression Eq. 2 we can find weight vector ||Wopt||. Using
expression Eq. 3 we can find dispersion of interpolated
values σ2 [ξ(t0+θ)/||X||]. The normalized efficiency of
interpolation can be represented as:

(11) 
 2

0

2

t + / X
e

     


Now, we consider a stochastic process with
normalized correlation function No. 1 in Table 1. We
select parameter α = 2for this correlation function, then
the efficient spectrum width for the random process is Δfý.
In addition to this, we shall consider a random proces with
a normalized correlation function as per expression Eq. 9

and the efficient spectrum width Δfý = 1, the same as for
the case analyzed above when we estimated forecast
variance. Let us no calculate the transversal filter at Δt =
0.01. In Fig. 2 you can see graphs e(θ) for these cases of
interpolating a random process on interval T = 1, 2.

As can be seen from Fig. 2, interpolation efficiency
for random processes is determined by the highest
derivative of a random process. Studies have shown that
if a random process is not differentiable, then for its
interpolation at the ends of the time interval it will suffice
to know its values on these ends. If a stochastic process is
differentiable only once, then the sample at the ends of the
interpolation interval is appropriate to be taken already for
two values; if the process is differentiable twice, then the
sample at the ends of the time interval is to be taken for
three values of the stochastic process, and so forth.
Subsequent increase in the sample size does not result in
better interpolation efficiency.

CONCLUSION

Summing up the aforesaid, we can state that the
efficiency of optimal linear forecasting and interpolation
of random processes using Wiener-Hopf filtering is
determined by the existing highest derivative of these.
Application of various correlation function models is
motivated by the investigative tasks set by the researcher.
Thus, we can use finitely differentiable random processes
for eliminating “paradoxical” effects assuming the form
of stochastic process singularity during optimal linear
interpolation or interpolation. Linear singularity of
random processes that are differentiable without
restriction can be eliminated by adding quantizing noises
during analogue-digital conversion or by adding white
noise.
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