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Abstract: The gears are in high demand in the
transmission systems of mechanical energy. The role of
the gears is to transmit motion or power between two trees
at a constant speed ratio. The materials used will vary
according to the uses. In this study, we propose a new
method for the fault diagnosis of a gear system made of
two toothed wheels operating at constant conditions. This
method is based on the Autocorrelation of Morlet Wavelet
Transforms (AMWT). It is applied on real gear signals for
the purpose of early detection of defects present in an
experimental tested gear system.

INTRODUCTION

Monitoring and gear faults diagnosis are essential to
prevent a serious defect in mechanical systems. The
information in the monitoring can be used for planning of
maintenance activities. Vibration analysis based on signal
processing is an effective approach for the analysis, the
detection and the gear faults diagnosis. The early
detection of defects in mechanical systems is very
important  for  operators  and  has  attracted  the  attention 
of many researchers in recent years (Mark et al., 2010;
Yang and Wu, 2015; Sipola et al., 2015). Their aim is
planning the repair of these systems rather than
catastrophic  damage  caused  by  unexpected  defects.
There are several techniques in the literature for the early
faults detection based on vibration analysis. Vibration
analysis  uses signal processing tools in the time,

frequency and time-frequency domains. Each technique
has advantages and limitations. The basic principle of
vibration analysis based on the fact that a change in the
mechanical systems conditions can induce a change in the
vibrations produced by this system. In simple systems,
this change may take the form of an increasing in
amplitude of the vibration signal. For more complex
systems, the change in the vibration signal due to
deterioration of a machine organ will be less considerable
and to identify the defect, more sophisticated techniques
are required.

The gear reductors are present in all mechanical
machines. We find them in most industrial sectors such as
the speed box in automobile industries. Researchers are
still  very  interested  in  the  study  of  gear  reductors
because of their relative weakness (Yang and Wu, 2015;
Sipola et al., 2015; Ayad et al., 2014).
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According to Li et al. (2011), gear system is an
essential element widely used in a variety of industrial
applications. Since, approximately 80% of the
breakdowns in transmission machinery are caused by gear
failure, the efficiency of early fault detection and accurate
fault diagnosis are therefore critical to normal machinery
operations. When the localized fault occurs in gears,
periodic impulsive characteristics of the vibration signal
appears in the time domain and the corresponding
frequency components will emerge in the frequency
domain. However, an effective signal processing method
is needed to eliminate noise and interference. Su et al.
(2010), propose a new method based on Morlet wavelet
and autocorrelation. At the beginning, to eliminate
frequencies associated with interfering vibrations, the
signal is filtered by a band pass filter built by Morlet
wavelet.

In this study, we propose a new method based on the
autocorrelation function of Morlet wavelet transforms.
This method is applied on real gear signals for the purpose
of early detection of defects present in an experimental
tested gear system.

MATERIALS AND METHODS

Continuous wavelet transform: The wavelet transform
provides a combination of time and frequency localisation
and thus, it is important for analyzing non-stationary
signals. The proposed method is based on the continuous
wavelet transform, so, a brief definition of continuous
wavelet transform is given.

The continuous wavelet transform of signal x(t) is
defined as:

(1) 1/2 * t b
CWT | a | X t dt

a





    
 

The function (ψ) is called mother wavelet or basis 
wavelet (Daubechies, 1990). (*) is a symbol of a complex
conjugate function.

The corresponding family of wavelets consists of a
series of daughter wavelets which are generated by
dilation and translation operations from the mother
wavelet ψ(t) shown as follows:

(2)  1/2
a,b

t b
t | a |

a
     

 

(a) and (b) are scaling (dilation) and translation
parameters, respectively. The scale parameter a will
decide the oscillatory frequency and the length of the
wavelet, the translation parameter b will decide its
shifting position (Daubechies, 1990; Mallat, 1989;
Olkkonen and Olkkonen, 2010).

From the mother wavelet, all the functions of the
family of wavelets will deduct, the parameter (b) positions
the wavelet on the time axis while the parameter (a)
controls  the  frequency  of  the  wavelet  (contraction:
high-frequency expansion: low frequency).

If |a|<<1, the wavelet ψa,b(t) is highly concentrated in
the mother wavelet ψ(t) and the frequency content shifted
towards the high frequencies of the analysis plan.

If |a|>>1, the wavelet ψa,b(t) is very large and the
frequency content focus on the low frequency analysis
plan (Daubechies, 1990; Mallat, 1989; Olkkonen and
Olkkonen, 2010).

If we vary the parameter of expansion (a), the
wavelet keeps the same number of oscillations
(Daubechies, 1990).

The Morlet wavelet is defined as a complex
exponential function in the time domain and has a shape
of Gaussian window in the frequency domain as follows
(Ayad et al., 2014):

(3)     2
c bt exp j2 f t exp t / f   

Where:
(fb) = The bandwidth parameter
(fc) = The central wavelet frequency

The parameters (fb) and (fc) control the shape of the
Morlet wavelet and balance the time-frequency resolution.
The mother Morlet wavelet is adapted with the gear
vibration signal by setting parameters of the wavelet to
balance the time-frequency resolution.

Autocorrelation coefficients: Random vibrations are by
nature unpredictable, so, the future values of the signal
can be defined only on the basis of probabilities. We
consider the random signal as the stochastic process
realization, i.e., the time evolution of a random variable.
We speak about cyclostationnarity of a stochastic process
representing the signal when the statistical parameters that
govern vary periodically. The autocorrelation function
calculates the internal dependencies of the signal. For
example, in the case of sinusoidal signal, the
autocorrelation coefficients are highly uniform and
homogeneous, so, the signal will have a strong
autocorrelation.

The rotating machines vibration signals consist of
periodic and random components. The autocorrelation
function is suggested to detect the periodicity of the
default signature (Rafiee and Tse, 2009). The
autocorrelation can better understand the evolution of the
process through time by using the probability of the
relationship between the data values separated by a
specific number of time steps called “lags” (Su et al.,
2010; Rafiee and Tse, 2009; Kankar et al., 2013).
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For a signal s(t), the autocorrelation function Rx(t) is
generally defined as the cross-correlation of the signal s(t)
with itself. The cross-correlation of a signal x(t) and y(t)
is given by the expression (Ayad et al., 2014; Su et al.,
2010; Rafiee and Tse, 2009; Kankar et al., 2013):

(4)     xy n 0
R t x n y n r




 

If  x(n) = y(n),  Eq.  4  becomes  an  autocorrelation
function:

(5)     xR t E x t , x t    

Where:
(τ) = The specific time step (lag)
E[,] = The mathematical esperance operation

For ergodic process, esperance can be replaced by the
limit of the time average. The autocorrelation of an
ergodic process is defined by:

(6)     
T

x T 0
R t lim x t x t dt   

The autocorrelation function reaches its peak in the
beginning where it takes the real value, i.e.,:

(7)   x xR R 0 

The autocorrelation function of the wavelet
coefficients is defined as the integral of the product of the
wavelet transform WTa, b (t) with itself delayed by (τ)
according to the following equation:

(8)     xx a,b a, bR t WT t WT t dt



   

We call the center point where the autocorrelation
reaches its maximum a peak point OPM (Origin Point
Maximum). If the size of a function x(t) is equal to (M)
where: (M>1), the autocorrelation function has a
dimension of (2 ×M-1).

The proposed method for predicting defects of
rotating machines consists to calculate the autocorrelation
of the Morlet Wavelet Transform (MWT). In this case, the
MWT is a two-dimensional matrix (M×N) and in
consequence the autocorrelation function will also be two
dimensional (O×P) with: (O = 2×M-1) and (P = 2×N-1).

Description of the system under study: The vibration
signals of the gear reductor under study have been
provided  from  CETIM  (Centre  d’Etudes  Techniques
des Industries  Mécaniques,  52  av.  Felix  Louat,  60300
Senlis, France) (Ayad et al., 2014; Antonia and  Randall,

Table 1: The expertise report (Haloui et al., 2007)
Days Observations
1 1st day of acquisition, no anomaly
2 No. anomaly
3 // //
5 // //
6 Crack  of tooth 1/2
7 No. evolution
8 Tooth 1/2 no evolution, tooth 15/16 start of crack
9 Evolution of crack tooth 15/16
10 // //
11 // //
12 Crack in all width of the tooth 15/16

2006; Parey et al., 2006). They are delivered from a
reductor operating 24 h over 24 h. The  dimensions of
gear wheels together with the operating conditions (speed,
couple) are adjusted, so that, we obtain a spalling on all
the width of a tooth. During experimentation, the system
has been stopped every day to observe the state of the
wheel teeth.

The gear system consists of two wheels with
respectively 20 and 21 teeth. This system operates under
fixed conditions 24h/24h. The rotational frequencies of
the two wheels are in the range of 16.67 Hz and the
frequency of meshing is in the range of 330 Hz. The
Records are made every day for 13 days. The vibration
signal from the test has 60160 samples with a sampling
frequency of 20 KHz. One of the teeth of a gear wheel
was damaged during the experiment. The expertise report
is given in Table 1 (Holoui et al., 2007):

RESULTS AND DISCUSSION

Given the large number of data (60160 samples), it is
difficult to treat them all. So, we must choose a reduced
number of data without losing information about the
system. For this, we must at least cover a period. We have
the rotational frequency 16.67 Hz and the sampling
frequency fsap = 20 kHz. To calculate the number of
samples covering the period, we divide the rotation period
T on the sampling period. So, the number of obtained
samples will be 1200 samples. We choose a number of
1500 samples.

Temporal representations of the signal and
scalograms: The temporal representations of the signal
emitted by the system for each day are given in Fig. 1. We
have given the temporal representation of the days: 8, 9,
10, 11 and 12. i.e., two days before the appearance of the
defect and two days after, in view of that we arrive to
detect the defect in the 10th day.

The temporal representation of the vibratory gear
signal during the first eleven days doesn’t give further
indication characterizing the occurrence of a fault. From
Fig. 1, it can be seen that the temporal representation of
the signals observed each day presents oscillations caused
by teeth meshing and a modulation of long duration
corresponding to the period of the two wheels (pinion of 
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Fig. 1(a-e): CETIM gear vibration signals recorded during, (a) 8th day, (b) 9th day, (c) 10th day, (d) 11th day and (e)
12th day. Displaying over 2 periods of rotation relative to the pinion

20 teeth and wheel of 21 teeth). The vibratory signal
keeps this shape until the 11th day. As against the 12th
day, during which the default is assumed to occur in the
form of crack in the full width of the 15/16 tooth
according to the expert report (Table 1), shows a different
representation. We observe a very high increase of the
signal amplitude around modulations relative to
oscillations between these last ones. So, the temporal
representation permits to diagnose a fault in the 12th day.
In the scalograms domain, we see from Fig. 2 that the
coefficients are stable and have the same order of
magnitude until the 9th day with a relatively small
amplitude change in the coefficients. This change is due
to a number of phenomena such as the level and the
quality of the lubricant for example. This change is also
due, according to the expert report (Table 1), to crack of
the tooth 1/2 in the 6th day,  start of crack in 15/16 tooth
in 8th day and evolution of crack in 15/16 tooth (the
expert report).

At the 10th day, we observe the complete
disappearance of part of the AMWT coefficients. This
disappearance of the coefficients is an early sign that
indicates that the gear system will suffer faults and this is
due to the evolution of the crack in the 15/16 tooth. The
gear system has a defect (peeling over the entire width of
tooth 15/16) in the 12th day which translates into a
complete change of the location of the AMW coefficients.
The aim of this part consist to determine the AMWT of
the vibratory signal delivered from the gear system and
accurately follow the evolution of the coefficients
obtained during the days of operation of the system in the
purpose of the early detection and location of a fault
before the spreading of the crack over the entire width of
the tooth.

In addition to its simple implementation, the
technique of AMWT presents a very effective tool in the
early diagnosis of gear reducer’s faults in rotating
machinery. It can diagnose a fault at the 10th day (2 days
before the full onset of the fault).
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Fig. 2(a-e): MWT scalograms of CETIM gear vibration signals, (a) 8th day, (b) 9th day, (c) 10th day, (d) 11th day and
(e) 12th day

Obtained results from the autocorrelation of the
AMWT: In this study, we apply the method of the
autocorrelation function on scalograms obtained by
applying the AMW on vibratory signal issued from the
CETIM  gearbox.  The  results  obtained  are  given  in
Fig. 3 and 4.

From Fig. 3 and 4, we observe that the AMWT
functions are similar and have the same order of
magnitude  until  the  9th  day  with  the  OPM  peak
amplitude  of  OPM(1500,25)  .  6×1019  (Table  2).
These  small  variations  are  due  to  several  phenomena
and   causes   mentioned   in   the   expertise   report
(Table 1).

At the 10th day, an increase of the autocorrelation
function is observed with an OPM peak amplitude of
value OPM(1500,25) =10.04842673892965×1019. This
increase   is   the   early   sign   of   the   presence   of   a 
fault in the gear system. This defect is due to the
evolution of the peeling in the 15/16 tooth (the expertise
report).

Table 2: The OPM peak amplitude values
The days OPM peak amplitude
5th (1500, 25) = 6.626733030945805×1019

6th (1500, 25) = 6.090234832595839×1019

7th (1500, 25) = 6.586669410632360×1019

8th (1500, 25) = 6.437468137514745×1019

9th (1500, 25) = 5.090191841432165×1019

10th (1500, 25) = 10.04842673892965×1019

11th (1500, 25) = 9.084636336550063×1019

12th (1500, 25) = 80.54631341778420×1019

At the 12th day and with the crack over the entire
width of tooth 15/16, the autocorrelation function
becomes very large (the OPM peak amplitude reaches the
value of OPM(1500,25) = 80.54631341778420×1019). So,
the autocorrelation function applied to the AMWT
scalograms can detect the presence of a fault at an early
day, i.e., the 10th day (2 days before the full appearance
of the fault).

Finally, we can say that the autocorrelation function
of  the AMWT presents a very effective tool in the early
diagnosis of gear reducer’s faults in rotating machinery.
The OPM peak amplitude values of all days are given in
Table 2.
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Fig. 3(a-e): AMWT autocorrelation of CETIM gear vibration signals recorded during, (a) 8th day, (b) 9th day, (c) 10th
day, (d) 11th day and (e) 12th day

Fig. 4: Continue
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Fig. 4(a-e): Contour of AMWT autocorrelation of CETIM gear vibration signals recorded during, (a) 8th day, (b) 9th
day, (c) 10th day, (d) 11th day and (e) 12th day

CONCLUSION

In this study, a gear box diagnosis technique based on
the autocorrelation of Morlet Wavelet Transforms. The
performances of this technique in the gear system
diagnosis have been discussed. The application of this
technique to the vibration signal emitted by the gear
reductor system permits to conclude that it can play an
important role in the study of gear vibrations. In fact, the
use state of a reductor is strongly related to modulation
phenomena that present the vibrations relative to the
meshing signal. We have shown that vibration analysis
through the autocorrelation based technique permits to
detect the fault presence and determine the deteriorated
wheel at the 10th day. Consequently, this technique is
very efficient for the diagnosis of faults in gear reductors.
Finally, we can say that in addition to its simple
implementation, the technique of autocorrelation of
Morlet wavelet transforms has a very effective and
valuable tool in the early diagnosis of gear reducer’s
faults in rotating machinery.
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