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Abstract: A new optimal method is proposed to tune PI
controllers for the First Order Plus Dead Time (FOPDT)
models. In this approach, a performance index is
employed with specification of the infinity-norm of the
sensitivity and complementary sensitivity functions. This
criterion determines desire values of PI controller
parameters for a bank of FOPDT models. Then an
Evolutionary polynomial regression is applied to extract
a tuning rule for PI controllers. At the end, the
performance of recommended method is evaluated by
several case study simulations.

INTRODUCTION

PI and PID controllers have proven to be very useful
instruments in industrial automation. Therefore, tuning of
PI/PID controllers for achieving a better performance still
attracts a great deal of attention. In this study, tuning of PI
controllers is studied and investigated. Due to their
applicability and simple structure, PI controllers are still
the most commonly used controllers in the process control
industry (Astrom et al., 1998). Therefore, many different
approaches have been proposed to tune these controllers,
since, 1940’s.

Frequency-domain approaches for tuning linear
optimal controllers have been studied since the beginning
of the 1980s. Several contributions can be found in a
survey paper by Francis and Doyle (Francis and Doyle,
1987). Lee and Yu (1994) presented tuning rules based on
frequency-domain analysis of the closed-loop behavior of
MPC controllers. Similar work was carried out for
designing robust feedback controllers that include mixed
time-frequency domain constraints (Schomig et al., 1993).
Several  PID  tuning  methods  were  proposed  base  on
the  frequency-domain  specifications  (Ho  et  al.,  1995), 

(Karimi  et  al.,  2003).  The  proposed  method  to  tune
PI  controllers  consists  of  employing  a  new  set  of
frequency-domain performance indices which gives
desired values of the PI controller's parameters for
different models. Then the Evolutionary Polynomial
Regression (EPR) is applied in order to extract a tuning
rule for the PI controller parameters in terms of model
parameters.

MATERIALS AND METHODS

Tuning procedure of the PI controller
Introducing the criterion: Dynamics of many industrial
processes  can  be  sufficiently  modelled  by  the  stable
First-Order Plus Dead Time (FOPDT) transfer function:

(1)dt s

s

K
G(s) e

T s 1




where, K, Ts and td are static gain, time constant and time
delay of the model, respectively. The PI controller
designed for this important category of industrial plants is
formulated as:
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(2)c
I

1
C(s) K (1 )

T s
 

In which Kc and TI are proportional gain and integral
time constant, respectively. This study presents a method
to tune PI controllers for the FOPDT models.
Accordingly, it leads to extract two formulas for Kc and TI

in terms of the FOPDT model parameters:

(3)c s dK f (K,T , t )

(4)I s dT g(K, T , t )

Many similar tuning rules have been proposed, since,
70 years ago. They have been designed based on different
specifications determined by the designer. In this study,
the frequency-domain specifications are employed to tune
PI controllers. For this purpose, a criterion is used which
considers specifications on the infinity-norm of the
sensitivity and complementary sensitivity functions. Such
a criterion was used by Garcia et al. (2005) to tune PID
controllers but it did not provide a tuning formula for the
controller.

The mentioned specifications stand for the stability
and performances of the closed-loop system. This
criterion can be expressed as:

(5)* 2 * 2
m m c cCF (M ( ) M ) (M ( ) M )     

In Eq. 5, Mm, known as modulus margin is defined as
inverse of the infinity-norm of the sensitivity function.
This value ensures a lower bound of 1/(1-Mm)  for the
Gain Margin (GM). Moreover, it is related to the upper
bound  for  the  disturbances  amplification  by  the 
closed-loop system. Typical values of Mm are in the range
of 0.5-0.75. The second design parameter Mc, defined as
the complementary modulus margin is equal to the
inverse of the infinity-norm of the complementary
sensitivity function. The value of Mc is related to the
resonance peak of the transfer function from set-point to
process output and forms a significant performance
indicator of the response to set-point changes. A
specification on Mc guarantees a lower bound for the
Phase Margin (PM):

(6)
2
c

m c

M 2
arccos( ) 63M 3

2


      

Suggested values for the largest magnitude of the
complementary sensitivity function is typically between
1.0 and 1.5 which gives a complementary modulus
margin Mc between 0.65 and 1. These values correspond
approximately to overshoots of 30 and 0%, respectively.
In  Eq. 5,  Mm*  and  Mc*  are  the  specified  value of the

modulus margin. The specifications  were  set  to  1.58 
for  the infinity-norm of the sensitivity function (Mm* =
0.65) and 1.01 for the infinity-norm of the complementary
sensitivity function (Mc*= 0.95) which give GM = 2.87
and PM = 56, respectively.

Defining desired tuning parameters for a set of
FOPDT models: In this study, the desired PI controller
parameters are defined using the criterion (Eq. 5) for
FOPDT models. For this purpose, a range of common
FOPDT models is defined using the definition of
Normalized Dead Time (NDT):

(7)
d

s

t

T
 

This quantity can be used to characterize the
difficulty of controlling a process. Roughly speaking, it
has been found that processes with small τ  are easy to
control and the difficulty in controlling the system
increases as τ increases (Astrom et al., 1992). To create a
bank of FOPDT models, for each parameter of the
FOPDT model, several levels were allocated which led to
810 models. The experiments arrangement is indicated in
Table 1. According to this table, the values of normalized
dead time for the created bank of models are set between
0.011 and 9 which include a wide range of FOPDT
industrial models. The similar empirical rules have been
developed for other tuning methods based on the
simulation of a large number of systems. For example,
Ziegler Nichols method works well for the models with
normalized dead time under 0.4. For each 810 produced
model, desired Kc and TI are needed to be defined. Here,
desired values are defined as values of Kc and TI which
minimize the cost function (Eq. 5). After performing the
simulations, a bank of data consisting FOPDT model
parameters and their corresponding desired PI parameters
is constructed. These data are then employed to tune
lambda by means of a method discussed later.

Evolutionary polynomial regression: Evolutionary
Polynomial Regression (EPR) is a data-driven method
based on evolutionary computing, aimed at searching
polynomial structures representing a system. This method
is a two-stage technique for constructing symbolic models
which consists of: structure identification and parameter
estimation. In the first stage, EPR searches for symbolic 

Table 1: Experiments arrangements for FOPDT  models
FOPDT
parameters Level 1 Level 2 Level 3 … Level 9 Level 10
K 1 2 3 … 9 -
Ts 1 2 3 … 9 -
td 0.1 1 2 ... 8 9
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structures by Genetic Algorithm (GA) and it estimates
constant values by solving a Least Squares (LS) linear
problem in the second stage. 

A general EPR expression can be presented as
follows (Giustolisi and Savic, 2006):

(8)
n

j 0
j 1

y F(X,f (X),a ) a


 

Where:
y = The estimated vector of the output of  process
aj = An adjustable parameter for the jth term
F = A function in the space dimensionally equal to the

number of inputs
X = The input variables matrix
f = A user defined function
n = The number of terms of the target expression

The general functional structure represented by F(X,
f(x), aj) is constructed from elementary functions using a
Genetic Algorithm (GA) strategy. The GA is employed to
select the useful input vectors from X to be combined. 

In development of EPR models, a number of
restrictions can be implemented to control the constructed
models in terms of the length of the equations, type of the
functions used, number of terms, range of exponents,
number of generations, etc. As a result, it is potential to
obtain different models for a special problem which
allows the user to acquire additional insight about the
problem. By implementing the EPR procedure, the
evolutionary process starts with a constant mean of output
values. By increasing the number of evolutions, it
progressively picks up the different participating
parameters in order to form equations representing the
constitutive relationship. The level of accuracy at each
stage is evaluated based on the Coefficient of
Determination (CoD) as the fitness function that can be
computed as:

(9)
 

  

2

pN
2

p pN

ŷ yN 1
CoD 1

N y avg y


 






Where:
í = The actual desired output
yp = The output predicted by EPR
N = The number of data points on which the CoD is

computed

If the model fitness is not satisfactory or the other
termination criteria are not fulfilled, another evolution is
needed in order to achieve a new model.

Application of EPR for tuning lambda: In this section,
EPR is applied to the data obtained in section 2.2. The
least square method was used to estimate parameters
using a singular value decomposition solver (Giustolisi

and Savic, 2006). The range of exponents has been set to
[-2 -1.9 … 0 … 1.9 2]. The value 0 has been set among
the exponent, so that, EPR can deselect those inputs
which are not essential for the model. The number of
generation, according to the previous experiences of EPR,
is set to 10. This parameter is related to number of inputs
and outputs and to the length of the expression. Finally,
this  analysis  leads  to  the  following  tuning  rule  for  Kc

and TI:

(10)
0.8

s
c

d

1 T
K 0.7511 0.032

K t

        

(11)0.6 0.2
I s dT 2.0389T t 0.22017 

In the next sections, these formulas are investigated
in details and their performances are compared to the
other tuning rules.

Comparison:  In this section, a thorough comparison is
done between the proposed method and some well-known
PI tuning formulas. For the comparison, several criteria
are considered to be compared such as:

C Settling time 
C Overshoot (%)
C The Integrated Absolute Error (IAE) defined as:

0

IAE r(t) y(t)dt


 

C The Total Variation (TV) of the manipulated input
defined as:

k 1

TV u(k 1) u(k)




  

C Gain Margin (GM)
C Phase Margin (PM)

The following PI tuning approaches are considered
for the comparison:

C Process reaction curve method of Ziegler–Nichols
(Z-N) (Ziegler et al., 1942)

C Murrill tuning rules based on minimizing IAE, ITAE,
and ISE (Murril, 1967)

C Zhuang and Atherton (Z&A) tuning rules based on
minimizing of ISE, ISTE and IST2E (Zhuang and
Atherton, 1993)

C Chien,  Hrones and Reswick Method (CHR) which is
a  modification  of  the  Ziegler-Nichols  methods
(Chien et al., 1952)
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C Smith tuning rules that gives a specified closed loop
response (Smith and Corripio, 2006)

C Astrom and Hagglund tuning  rules that maximize
performance  subject  to  a  constraint  on  the degree 
of robustness (Juneja et al., 2010)

The tuning formulas of the mentioned methods are
given in Table 2. Many of these tuning formulas seem
quite out of date. However, these methods are
representative and they are generally bases comparison
for more recent tuning methods.

Due to existence of the factor (1/K) in Kc formula of
all tuning rules, without loss of generality, we set K = 1 in
simulations. Accordingly, 90 FOPDT models are
considered  for  comparison.  As  it  can  be  seen  from
Table 2, many of tuning rules are valid only for small
values of NDT. Accordingly, the comparison is carried
out in two cases:

First, the FOPDT models whose NDT values are
between 0.11 and 1 are discussed. These models include
36 models of totally 90 considered FOPDT models. In
this case, the proposed tuning method is compared to the
methods in the first part of Table 2. For each model, the
criteria defined in section 2.1 are calculated and the
average values of different criteria were considered as
new performance indices.  These comparisons can be
observed in Fig. 1. Form this Fig. 1, the following
observations can be seen:

Figure 1a shows the average values of settling time
for different methods. It can be seen that the proposed
method gives an average settling time equal to 22.3 which
is the smallest value after the value provided by Z&A
(IST2E) which is about 15.

The proposed method provides small values of
overshoot with an average of 4.3%. Surprisingly, Z&A
(IST2E)  leads  to  a  smaller  overshoot  compared  to the

Table 2: PI tuning formulas
Category Methods Kc TI Comment
1 Murrill (ITAE) [0.859(Ts/td)

0.977]/K [Ts(td/Ts)
0.438]/0.552 0.1<τ<1

Murrill(ISE) [1.035(Ts/td)
0.959]/K [Ts(td/Ts)

0.739]/0.492 0.1<τ<1
Murrill (IAE) [0.984(Ts/td)

0.986]/K [Ts(td/Ts)
0.707]/0.608 0.1<τ<1

Z & A (ISE) [0.98(Ts/td)
0.892]/K Ts/[0.69-0.155(td/Ts)] 0.1<τ<1

Z & A (ISTE) [0.712(Ts/td)
0.921]/K Ts/[0.968-0.247(td/Ts)] 0.1<τ<1

Z & A (IST2E) [0.569(Ts/td)
0.951]/K Ts/[1.023-0.179(td/Ts)] 0.1<τ<1

Ziegler-Nichols [0.9(Ts/td)]/K 3.33*Td 0.1<τ<1
2 Smith [0.5(Ts/td)]/K Ts -

CHR (os.0%) [0.35(Ts/td)]/K 1.2Ts -
CHR (os.20%) [0.6(Ts/td)]/K Ts -
As. & Hag. [0.14+0.28(Ts/td)]/K 0.33td+6.8Tstd/(10td+Ts) -
Klein 0.28Ts/K(td+0.1Ts) 0.53Ts -
Stogestad [0.5(Ts/td)]/K min (Ts, 3td) -

Fig. 1(a-f): Comparison between the proposed method and the methods designed for the processes with small τ
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Fig. 2(a-f): Comparison between the proposed method and the methods designed for the processes with different τ

others. The mean values of IAE for different methods are
closed together. The proposed method gives a small TV
compared to other methods.

Gain margin and phase margin of the proposed
method have average values of 3.24 and 60.3,
respectively. As it was expected from the predefined gain
margin and phase margin specifications in section 2.1, the
minimum values of GM and PM for all 36 models are
respectively 2.91 and 56.83 which provide a good
performance for control system.

Although, the proposed tuning rules have a suitable
performance for FOPDT models with 0.1<τ<1, an exact
comparison shows that the A&Z (IST2E) method gives a
better performance compared to the proposed method.
However, this superiority is reliable only for the FOPDT
models with small NDT while the proposed method can
be applied to dominant time delay systems. Therefore, the
proposed method is preferred to be used in spite of the
superiority of A&Z (IST2E) for models with small
normalized dead time.

Here, the proposed method is compared to the
methods in second part of Table 2. In this case, the PI
controller is applied to the FOPDT models with different
values of τ including dominant time delay systems. The
recommended tuning rules and the others are applied to
90 FOPDT models and the average values of different
criteria were calculated as indicators of the comparison.
This comparison is depicted in Fig. 2.

The average value of settling time for the proposed
method is 27.9, while the smallest value of settling time
is belong to CHR (20% o.s.) which is 26.5. Therefore, the
proposed method results in a good settling time for the
response.

The mean value of overshoot for the proposed
method is 2.1% which is the lowest value of overshoot
after CHR (0% o.s.) methods. CHR (0% o.s.) has no

overshoot of response but it leads to a settling time twice
the proposed method. From Fig 2b, it can be seen that
CHR (20% o.s.)  leads to an overshoot equal to 8.1%
which is a large overshoot value compared to the
proposed method. So, it seems that the slight superiority
of CHR (20% o.s.) in settling time cannot justify its large
overshoot compared to the proposed method. 

The average values of IAE for different tuning rules
are indicated in Fig. 2c. Obviously, the proposed method
leads to a smaller mean value of IAE compare to the
others. The mean values of TV for different methods are
compared in Fig. 2d.  The proposed method has a small
value of TV compared to the most other methods.  

The averages values of gain margin and phase margin
achieved by the proposed method are 3.54 and 65.12,
respectively. The minimum values of GM and PM for all
90 models are respectively 2.89 and 56.83 which fulfil the
predefined specifications in section 2.1. Figure 2e shows
that the other methods provide larger values of GM
compared to the proposed tuning rules. For example, the
Klein tuning rules provides an average GM more than 8.8
which is a large value of GM. However, overweighting on
gain margin criterion can cause a poor performance of the
method.

The above observations of the simulations on 90
FOPDT models show that the proposed tuning rules
provide a good efficiency for the control system. 

RESULTS AND DISCUSSION

Simulation study: The proposed formulas for tuning PI
controllers are tested via. several simulations on FOPDT
models with different values of NDT. To more evaluate
the proposed method, the closed-loop responses of other
tuning methods are compared to the proposed method's
response:
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Fig. 3: Output responses of different tuning methods of G1

(12)
s

1

e
G (s)

8s 1






This model has a small NDT = 0.125. For
comparison, the Zhuang and Atherton (IST2E) and the
Murrill (IAE) tuning rules were chosen for their high
performance shown in section 3 and the Ziegler-Nichols
method was considered as the most common tuning rule.
Fig. 3 represents the output response in presence of a step
input disturbance of magnitude 1 (100% of set point). It
can be seen that the Murrill and Z-N lead to an oscillatory
response with a large overshoot while Z&A method and 
the proposed tuning rules give a suitable response with a
small  overshoot.  However,  the  disturbance  damping in
Z-A and Murrill is swifter than the others:

(13)
2s

2

e
G (s)

3s 1






For this model, the NDT value is 0.66. the output
response in presence of disturbance (70% of setpoint) are
shown in Fig. 4. The proposed method and Z&A (IST2E)
methods result in better responses (low value of overshoot
and settling time). The Ziegler-Nichols tuning approach
shows a slow response both in setpoint tracking and
disturbance rejection.

In above two examples, the FOPDT models with
small NDT were considered and the proposed method was
compared to those methods which were designed for
small τ (category 1 of Table 2). In the next examples, the
second part of tuning rules given in Table 2 is compared
to the proposed method which are applicable for the
FOPDT models with different NDT. For the comparison,
the smith method and CHR (20%  o.s.) are chosen which
have shown good performances in section 3 compared the
others:

Fig. 4: Output responses of different tuning methods of G2
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Figure 5 shows the closed loop responses of all PI
controllers tuned by three mentioned methods for the
above FOPDT models. The simulations were performed
in presence of step input disturbance of magnitude 0.5
(50% of setpoint). It can be observed that the proposed
method gives a smooth response both in setpoint tracking
and disturbance rejection without any overshoot while the
other methods lead to responses with overshoot and same
settling point as the propose method.

The above examples show the good performance of
the proposed tuning rules for large values of NDT. The
similar simulations are performed for the FOPDT models
with small values of NDT in next examples:

(18)
0.5s

7

e
G (s) ; 0.1

5s 1



  


(19)
0.1s

8

e
G (s) ; 0.005

20s 1



  


In Fig. 6a the closed loop response for G7 is
presented  in  presence  of  input  disturbance  of
magnitude 1. The proposed method still gives a
convenient  response  with  a  small  overshoot. However,
for  the  FOPDT  models  which   have   very small values
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Fig. 5(a-d): Output responses of different tuning methods of G3, G4, G5 and G6

Fig. 6(a, b): Output responses of different tuning methods of G7 and G8

of   τ,   like  G8,   the   propose   method   leads  to  a
response  with  smooth  behavior  but  a  large  settling
time.   Thus,   for   FOPDT   models   with   very   small
values of NDT, the proposed method gives a slow
response.

CONCLUSION

In this study, an optimal data-based method was
proposed to tune the PI controller’s parameters for
FOPDT models. The procedure of the proposed approach

99

 

Prop.

Smith

CHR20%

Prop.

Smith

CHR20%

Prop.

Smith

CHR20%

 

Prop.

Smith

CHR20%

 
  

1.2 

 
 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 
 
 
 

0.2 

 
 
 
 
 
 
 
 
 

0 
0                     20                    40                     60               

Time 

C
lo

se
d 

lo
op

 r
es

po
ns

e 
(G

3)
 

1.2 

 
 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 
 
 
 

0.2 

 
 
 
 
 
 
 
 
 

0 

C
lo

se
d 

lo
op

 r
es

po
ns

e 
(G

4)
 

0             20              40             60            80          100 

Prop. 

 

Smith 
CHR 20% 
 

Prop. 

 

Smith 
CHR 20%

Time 

0              50            100           150            200           250 

Time 

0                  100               200                300                400 

Time 

1.2 

 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 
 
 

0.2 

 
 
 
 
 
 
 
 
 

0 

C
lo

se
d 

lo
op

 r
es

po
ns

e 
(G

5)
 

1.2 

 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 
 
 

0.2 

 
 
 
 
 
 
 
 
 

0 

C
lo

se
d 

lo
op

 r
es

po
ns

e 
(G

6)
 

Prop. 

 

Smith 
CHR 20% 

Prop. 

 

Smith 
CHR 20%

(a) (b) 

(c) (d) 

Prop.

Smith

CHR20%

Prop.

Smith

CHR20%

1.2 

 
 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 
 
 
 
 

0.2 

 
 
 
 
 
 
 
 

0 

0                             10                            20                           30 
Time 

Prop. 

 

Smith 
CHR 20% 

S
te

p 
re

sp
on

se
 (

G
7)

 

1.4 

 
 
 
 
 
 

1.2 

 
 
 
 
 
 
 
 

1.0 

 
 
 
 
 
 
 
 
 

0.8 

 
 
 
 
 
 
 

0.6 

 
 
 
 
 
 
 
 

0.4 

 
 
 
 
 
 
 

0.2 

 
 
 
 

\ 
 
 

0 

S
te

p 
re

sp
on

se
 (

G
8)

 

Prop. 

 

Smith 
CHR 20% 

0               2                4                6               8             10 

Time 

(a) (b) 



Int. J. Syst. Signal Control Eng. Appl., 10 (2): CCCC, 2017

was based on minimizing a frequency-domain criterion
and employing EPR to extract the tuning rules. A
thorough comparison was performed to evaluate the
performance of the proposed method on a bank of
different FOPDT models. It was observed that the
proposed method works well for a wide range of FOPDT
models. It gives smooth responses with small values of
overshoot for delay dominant systems. However, for the
models with very small normalize dead time the
recommended tuning rules give a slow response. A further
study with focus on SOPDT models and PID controllers
is suggested.
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