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Kharitonov Based Robust Stability for a Flight Controller
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Abstract: Tn this study, an extended SIMC PID controller is designed for an unstable angle of attack of a
FOXTROT aircraft and then its stability is tested for a particular range of perturbation values. The robust
stability for the above system is tested analytically and graphically using Kharitonov Stability Criterion.
Further, 1t was established that not only the designed controller along with the plant is stable but also robust

stable while the aircraft flies with different speed.
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INTRODUCTION

The major problems of flight control system are due
to the non-linear dynamics, modeling wncertainties and
parametric variation m characterizing the aircraft and its
unpredicted environments. The aircraft motion in free
flight is complicated. In general, an aircraft flies in a three
dimensional plane by controlling its control surfaces
aileron, rudder and elevator. These control surfaces
control and change the motions of the aircraft about the
roll, pitch and vaw axes. Elevators are flight control
surfaces usually at the rear of an aircraft which control the
orientation of the aircraft by changimng the pitch and angle
of attack of the aircraft. Though, a lot of researches have
been done to control the angle of attack, still it is an open
1ssue which 1s discussed in the present research. Not only
the designed controller 1s required to offer satisfactory
performance in terms of controlling the angle of attack, it
also has to be robust stable for a wide range of change in
parametric values of closed loop transfer function (of the
angle of attack control system). Because the parametric
changes occur due to different speed of the aircraft in
different flight conditions and due to other environmental
changes. Kharitonov (1978) found out asymptotic
stability of a family of systems for an equilibrium position
with help linear differential equations. Kharitonov theorem
also provides the necessary and sufficient conditions for
checking the robust stability of the dynamic system with
fractional order interval systems (Chapellat and
Bhattacharyya, 1989; Hote et al., 2010; Moomani and
Haeri, 2010). Fu (1991 ) developed a simple approach which
unifies and generalizes a class of weak Kharitonov
regions for robust stability of lnear uncertain systems.
Chen et al. (2008) considered robust stability problem for
interval plants in the case of single input (multi-output) or
single output (multi-mput) systems using a generalization

of Kharitonov's theorem. Bevram and Shokoohi (2010)
designed a robust Proportional Integral Derivative (PID)
feedback compensator for better stability and robust
performance of a radio-frequency amplifier with wide
range parameter variation. The robust stability feedback
controller synthesis can be tested using Kharitonov’s
theorem for fuzzy parametric uncertain systems (Bhiwani
and Patre, 2011). Toscano and Lyomet (2010) synthesized
a feedback controller to obtain robust static feedback
using evolutionary algorithm.

Skogestad Internal Model Control (SIMC) tuning
rules may be extended to cover for a 2nd order delay
transfer function. SIMC for integrating process (damping
ratio, {>1) and double integrating process ({ = 0) can be
applied to the process with real poles but it is not
applicable for process with complex poles (Manum, 2005,
Skogestad, 2003; D1 Ruscio, 2010). Therefore, a new set of
tuming rules called the interpolation rule is derived by
interpolating between the SIMC for integrating process
and SIMC for double integrating process.

In this study, a PID controller 1s designed using
Skogestad Internal Model Control (SIMC) for different
flight conditions in the presence of disturbance. In this
research, the parametric perturbation (u) is allowed to
increase up to a particular value below which the
controller is robust stable by establishing the Kharitonov
polynomials to be Hurwitz. Increasing beyond this value
of n, the controller 13 not robust stable resulting non
Hurwitz Khritonov polynomials. It 1s shown that the
Kharitonov rectangle does not meclude zero within it.
An interval polynomial family s
robust stable for all frequencies w20 resulting H (w)
(Bhattacharya et af., 1995).

Thus, the designed controller not only offers the
desired angle of attack but also it is robust stable up to
particular value of parametric perturbation p.

shown to be
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KHARITONOV POLYNOMIALS

Consider an nth order polynomial (Skogestad,
2003) of the form given by p (s) = s™ta,, s™'+..+a,
for all a,, ..., a,, such that & <a,<a_ k = 0, ., n-l.
Where & =a-pu, & = atpand p = The perturbation in
parametric values which is also a positive real. Let, the
polynomials be defined as:

g(s)=a, +as’ +as +. = i jk-mn{jkﬂk:jkak}-sk

k=0, even
n
g, (s) =a,+as’+as’+.. = Z jk.max{jkgk,jkﬁk}.sk
k=0, even
n
hs)=as+as +as’ +.= > jk’l.nﬁn{jk’lgk,jk’lﬁk}.sk
k=1, 0dd
n
hy(s)=as+as +as’ +.= 3 jk'l.max{jk'lgk,jk'lﬁk}.sk
T

The Kharitonov polynomials are given by:

Ky(s)=gu(s) T hu(s)
Where,Ic,1=1, 2 k=1 and1=1.

K (s)=g(s)+h(s) M
Fork=1andl=2:

ksl5)=2,() s fs) @
Fork=2andl=1:

kyy ()= g, (s)+ 1y (s) (3)
Fork=2andl=2:

ky,(s)=g.(s)+hy(s) )

The set of polynomials ki, (s), k, (s), k;; (s) and
k,, (s) are said to be Hurwitz if and only if its every
member 1s Hurwitz.

ANGLE OF ATTACK

Angle of attack specifies the angle between the
chord line of the wing of afixed-wing awcraft and the
vector representing the relative motion between the
aircraft and the atmosphere (McLean, 1990). The angle of
attack is controlled by the deflection in control surface
(elevator) (Fig. 1).

Block diagram of angle of attack: The block diagram for
angle of attack is shown in Fig. 2, in which the input is the
deflection of elevator (8;) as commanded by the pilot and
the output 1s the desired angle of attack ().

In Fig. 2, §; = Deflection of elevator as commanded
by the pilot; & = The desired angle of attack of the
aircraft, G (s) = Open loop transfer function between
9; and «; C (s) = PID controller to be designed (tuned),
G, (s) = The transfer function of the disturbance = G (s).

Transfer functions between &; and o: The short period
approximation (McLear, 1990), consists of assuming that
any variations i speed of the awcraft (u) which arise
in air speed as a result of control surface deflection,
atmospheric turbulence or just aircraft motion are so small
that any terms mn the equation of motion mvoelving u are
negligible. Tn other words, the approximation assumes that
short period transients are of sufficiently short duration
that speed of the amrcraft U, remain essentially constant,
i.e., u= 0. Thus, the equations of longitudinal motion in
terms of stability may now be written as:

W=7, w+U,q+ 7,5 (5)

q=wM, +MW+Mq+M, 8, =(M, +M,Z,) ©
W (M, + UM, Jq+{ M +Z; M, }5,

Lift

Resultant force

Drag
Relative wind
Centre of pressure

Fig. 1: Description of angle of attack

Distrubance D {s)

G, (s)

U(s)

+
8 (s) a® Ce) a(s)

h 4

Fig. 2: Block diagram of angle of attack control system
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If the state vector for short period motion is:

q
The control vector u 1s taken as the elevator

deflection &g then Eq. 5 and 6 may be written as a state
equation:

X

(=3

%= Ax+Bu (7
In Eq. 7, the values of A and B are:
Zw UEI
A=
(M, + M2, }(M, + UM, )
Z,
B:
(M, +Z,M,]
s—2Z, -U,
~[s1-Al=
[s1-A] (M, Z M )5 (M, + UM, )|
A, (s)=det[sT- A] =5 = Z, +M, + UM, |s ®
+[ZM, - UM, |=s"+20 o s+,
In Eq. &
26,0, =Z, + M, T UM,
)

o, =[ZM, - UDMWF

On simplifying the above earlier equations, the
transfer function 1s given by:

87,
UMM Z 1+———%E
,( T ' 5E){ +UDM5EMRZ5E}
Ay (s)
w(s) _ K, (1+5T) (10)
6E(S) ASF S)
InEq. 10
T, :Zi,Kw =UM, -M_Z,
KW E E
Again:
AR C)
oc—U .as)= =

Andw () =T, & (3)

28

3 KW(1+ST1)
U, (s)

0=sp

(11)

Using the values of the stability derivatives
(Bhattacharya et al., 1995) as shown in Appendix and
substituting these values in Eq. 11, the transfer function
G, (s) between &; and ¢ for the flight condition-1 is
given by:

6,(s)- 2.0302s +102.8
57 +0.901s + 0.5633

36045 +182.5

C1.775s° +1.598s + 1

(12)

Similarly, the transfer function G, () between 8, and
¢ for the flight condition-2 is given by:

_ 15115+ 0.003027
8° +1.2989s+ 8.216
1.84s+ 368.5

T 0.121782 + 0.1581s + 1

Gz(s)

(13)

Again, the transfer function G; (s) between §; and «
for the flight condition-3 is given by:

64 (5) = 227.545+ 7266

s’ +1.825+ 28.54
096533+ 2546
©0.0350s% + 0.0638s + 1

(14)

DESIGN OF EXTENDED SIMC PID CONTROLLER
Let, the extended SIMC PID controller be:

K +K,

s+Ks

C(s)= (15)

Where:

K. = Proprotional constant
K; = Integral constant

K = Derivative constant

The tumng parameters for an under damped second
order process are given by (Fu, 1991):

K. = max{A, X}, where X =B for{ =1
and X = {B+(1-£) C for {<1

K, =max{A, X}, where X =B for { > 1
and X = {B+(1-¢) C for §<1

K 1s either A, B or C where:
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1 16
A k"(TCJrG)TU (16)

1+ 4('50+9)+£

Bz 4
k'(t.+0)
e (18)
2k’ (1. +9)
Where:
ko= kit
k = The gain
T, = llw,
w, = Natural frequency of oscillation
{ = Damping ratio

Te = The controller tuning parameter
= 1, (1.5+0.5 () (0.6)* is the delay angle

a = 1,

Calculation of K., K, and K for FC-1: Comparing the
denominator part of G, (s) with the standard form of a 2nd
order system, s*+2{w stw,’, the value of { and 1, for FC-1
1s obtamed as 0.5996 and 1.3324, respectively. In this case,
0 =09683,1,=50 =48415 k=1 and k" =k/t, = 0.5633.
Calculation of K, 1s the constants A, B and C mentioned
in BEq. 16-18 are denoted here as A, -C., which are
calculated for FC-1 as follows:

28
Ay = ——=02750
. k' (T, +6)1,
1+ 4(t,+6)+ ¢/
w=— (T” )+§ 12085
k' (t.+6)
1
Coy=————5=00263
2k (1. +6)

X, =B, +(1-¢)C,, =0.7891
K = Max{A.. X} =0.7891

(19)

Calculation of K;;: Similiarly from Eq. 16-18, the constants
Ay-C,, are calculated for FC-1 as:

1

A =———=01721
" k'(t. +0)1;

Bi=— = —00237
k{t.+6) 1,

1
Cy=— = 000051578
16k (1. +6)
X, = (B, +(1-4)C, = 0.0144 20)
K, = Max{A,,X,}=01721

Calculation of K,;: Again from Eq. 16-18, the constants
AL, -Cp, are calculated for FC-1 as:

1
A =B =C,,=——=03056
D1 D1 DLy (Tc i 9) (21)
K, = Either A B, orC, =0.3056

Calculation of K, K; and K, for FC-2: The value of { and
T, for FC-2 is obtained as { = 0.2266 and 1, = 0.3489.
In this case, 0 =0.5289, 1. =0.02,0 =0.0106 and k=1 and
k" =kitf=8.216.

As, researchers have obtained m FC-1 similarly the
values of K., K, and K, are obtained as follows:
K =0.5225 K, =1.8536 and K, = 0.2256.

Calculation of K, K; and K, for FC-3: The value of { and
T, for FC-3 is obtained as: { =0.1705and 1, = 0.1872. In
this case, 0 = 0.1995, 1.= 0.0008, 0 =0.000159, k=1 and
k' =k/ti = 28.54. Asresearchers have obtained in FC-1,
similarly the values of Kq,;, Ki; and Kp; are obtained as
follows: K= 0.7704, Kj; = 5.0075 and K,; = 0.1755.

Derivation of PID controller for different Flight
Conditions (FCs): The PID controller transfer fumction
for flight condition-1 158 C, (s) = K Ky/s+Kps. The
values of K, K, and K, is obtained earlier from previous
Eq. 19-21, respectively. Therefore, substituting these
values in Eq. 15, C, (s) for flight condition-1 1s given by:

_ 030565 +0.78915 + 0.1721 22)
E)

Ci(s)

Similarly, PID controller TF for FC-2 and FC-3 are
calculated, respectively after substituting the values of
Kes Ky and Koy and Ky, Koy and Ko

_ 0.22565" +0.52255 + 1.854 23)
K]

Cy(s)

_ 0.17555° + 0.7704s + 5.007 (24)
5

Cy(s)

Now, the loop transfer functions for FC-1-FC-3 are
obtained as follows:

20
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_ G,(s)C\(s)
1+G1(S)C1 (s)

_ 1.101s" + 58.61s% + 144.65 + 31.41
28765 + 60.25° + 145,68+ 31.41

T,(s)= G, (s)C,(s)

: 1+ G, (s)C, (5)
_ 0.4152s% + 84.11s* + 1963 + 683.1
053695 + 842757 + 1975 + 683.1

T,(s)

(25)

(26)

_ G, (s)Ci(s)

1+G;(s)Cy(s)
0.169487 + 454187 + 2015 + 1275
0.2044s7 + 45.48s” + 2028 + 1275

T, (s)

27)

ROBUST STABILITY OF PID CONTROLLER

The characteristic equation for FC-1 is obtained from
Eq 25 as:
p(s)=1+G {8)C,(3) = 2.8768° +
60.2s% +145.65 + 31.41

The perturbation in parametric value of p (s), i.e., pis
allowed to mncrease from upto 81.56% and the Kharitonov
polynomials for FC-1 are found out using Eq. 1-4 are as
follows:

K, (s)=5.8007s" + 26.8632s° + 109.2931s + 5.224

Ky, (5)=58007s + 264.3368s" +109.2931s + 0.5306 (28)
K, (s)=57.0793s° + 26.8632s" + 11.1069s + 5.2214
K,,(s)=57.0793s’ + 264.3368s" + 11.1069s + 0.5306

These above polynomials are tested for Hurwitz
using Routh Hurwitz criteria and found out to be Hurwitz
Polynomials by establishing the coefficients m first
column are positive. If the perturbation 1s further allowed
beyond the above value of u the polynomials are found
not to be Hurwitz resulting the coefficients to be are
negative. Thus, it is concluded that the designed
controller along with the plant transfer function (angle of
attack) discussed here 1s robust stable up to the
perturbation range of 81.56%. Similarly, the characteristic
equation for FC-2 is obtained from Eq. 26 as:

p(s)=0.5369s° +84.27s* +197s +683.1

In this case, u is found out to be 74.11%.
Therefore, the designed controller 1s robust stable up
to the perturbation range of 74.11%. The Kharitonov
polynomials for FC-2 are calculated as:

30

(29)
Again for FC-3, the characteristic equation for FC-2
is obtained from Eq. 27 as:

p(s)=0.20445" + 45.48s% +202s+ 1275

And the perturbation range is 71.17%. Therefore, the
parametric value p is allowed up to 71.17%. The
Kharitonov polynomials for FC-3 are calculated as:

K, (s)=367.5825s" + 58.2366s" + 77.8481s + 0.3499
K,,(s)= 367.5825s’ +345.7634s* + 77.8481s+ 0.0589
K, (s)=218245’ +58.25" +13.1s + 0.3

K, (s)=2182.4s" +345.8s* +13.1s + 0.1

(30)
Kharitonov rectangle and zero exclusion for interval
families (graphical testing of robust stability): An
interval polynomial family having invariant degree and at
least one stable variable 1s robustly stable if and only if
the origin of the complex plane 13 excluded from the
Kharitonov rectangle at all non-negative frequencies, i.e.,
for all frequencies w=0.
The four vertices of Kharitonov rectangle K, (jw,),
K, () and K, (jw,) are obtamned by substituting s = j w,
inEq. 28 for FC-1, Eq. 29 for FC-2 and Eq. 30 for FC-3 ata
fixed frequency w, The Kharitonov rectangles for FC-1
(at w, = 8), FC-2 (at w, = 3) and FC-3 (at w, = 5) are shown
i Fig. 3-5, respectively.

0.5 *10°
0.0 Kol Ky (joo)
0.5

q -10-

) 1.54
-2.04
-2.54
2 ke God Ky G0
3.5 T T T T T T T T T 1

Q
Real axis
Fig. 3: Kharitonov rectangle for FC-1 at w, = 8
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x1¢*

K. (o0 K, (o)

Imaginary axis

K. (oo Kn (oo

T T T T T T T 1
-3500 -3000 -2500 -2000 -1500 -1000 -500 O
Real axis

Fig. 4: Kharitonov rectangle for FC-2 at w, =3

0.0-%10°

Ky, (jey) K, (ja)

-0.5

-1.04

-1.5

-2.01

Imaginary axis

-2.54

3.0 Ky (og K; (og

FESEFSESSF e 0

Real axis

Fig. 5: Kharitonov rectangle for FC-2 at w, = 5

However, the size and the position of the Kharitonov
rectangle may change with @ but the sides of the
rectangle remain parallel to the respective real and

imaginary axis.

Frequency sweeping function for robust stability: An
mterval polynomial family is robustly stable if and only if
H ()0 for all frequencies w=0.

ReK,, (jo)
—ReK,(jo)
ImK,, (jo)
—ImK,; (jo)

H{® )= max

For FC-1: Substituting s = jw in Eq. 28, researchers get:

K, {jo)=-58007jo’ —26.8632jo’ +109.2931jo +5.2214
K, (jo)=-5.8007jo" — 264.3368jo" + 109.2931jm + 0.5306
K, (jo)=-57.0793ja’ - 26.8632j0’ +11.1069j0+ 5.2214
K, (jo)=-57.0793]je’ - 264.3368j’ +11.1069jam + 0.5306

31

Again:
ReK (_]0)) =-26.86320" + 52214
ReK,, (jo) = ~264.33680° + 0.5306
ImK,, (jco): —57.07930° +11.10690
ImK,, (jo)= 5707930 +11.106%

For FC-2: Similarly substituting s = jw in Eq. 29,
researchers get:

K, (jo)=-1768546jw’ — 51.0033j’ +146.7225j0+ 0.9348
K, (jo)=-176.8546j0’ — 342.9967]0’ +146.7225jm+ 0.1390
K, (jo)=-11893j»’ - 51.0jo’ + 21.8j0+ 0.9
K, (jo)=-11893ja’ —343.0je" + 21.8jo+0.1
Again:
ReK, (jo) =-51.00330” + 0.9348
ReK,, (jo)=-342.9967" + 0.1390
ImK,, (jo)=-118930" + 21.86
ImK,,(jo)=-11893x + 21.80

For FC-3: Substituting s = jw in Eq. 30, researchers get:

K, (jo)=-367.5825j0’ - 58.2366j" + 77.8481jo+0.3499
K, (jo)=-367.5825]0’ — 345.7634jo" + 77.8481jm + 0.0589
K, (jo)=-21824jo’ -582jo’ +13.1jo+ 03
K, (jo) =—2182.4je’ -345.8je’ +13.1jo+ 0.1
Again:
ReK,, (jo)=-58.2366x" + 0.3499
ReK,,(jo)=-345.76340" +0.0589
ImK,, (jo)=-218240" +13.10
ImK,, {jo)=-218240" +13.10

Tt is clear from the equations that for any frequencies
w >0, the value of H (w)>0 and the family of interval
polynomial is robustly stable.

CONCLUSION

In this study, p 1s allowed to mcrease up to a
particular value below which the controller is robust
stable by establishing the Kharitonov polynomials to be
Hurwitz. These values of parametric perturbation p for
different flight conditions are 81.56% (FC-1), 74.11%
(FC-2) and 71.17% (FC-3), respectively. Increasing beyond
this value of p the controller is not robust stable resulting
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Non-Hurwitz Khritonov polynomials. Thus it is shown in
this study, the controller designed here not only offers
the desired angle of attack but also it 13 robust stable up
to particular value of parametric change, p. The earlier
result analysis also shows that the aircraft is less robust
stable with increasing the speed of the aircraft.
However, this 15 not surprising as arcraft becomes less
stable and becomes more unstable with mcrease m its
speed. Tt is shown that the Kharitonov rectangle does not
include zero within it. The interval polynomial family is
shown to be robust stable for all frequencies >0 resulting
H (w).

APPENDIX

Stability derivatives of longitudinal dynamics of foxtrot aircraft
Flight Conditions (FC)

Stability
derivatives 1 2 3
U, (m sec™) 70 265 350
X -0.012 -0.009 -0.0135
X 0.14 0.016 0.006
Zy -0.117 -0.088 0.0125
Za -0.452 -0.547 -0.727
Zy -0.76 -0.88 -0.125
M, 0.0024 -0.008 0.009
M, -0.006 -0.03 -0.08
M, -0.002 -0.001 -0.001
M, -0.317 -0.487 -0.745
Xz 1.83 0.69 0.77
Zep -2.03 -15.12 -27.55
Mg -1.46 -11.14 -20.07
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