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Abstract: In-line mixing problems affected by controlled vanables, such as conductivity, pH, viscosity which
strongly depends on complementary physical variables disturbances, such as temperature and pressure
variations are appropriate candidates to be solved using neural network modesl-based functional approximation
techniques. The aim for this type of non-linear control problems is to compute the proportions of input product
flow rates yielding a final product, thus satisfying as much physical properties as manipulated input

flow rates exists in a considered plant. The core of the contribution is a functional approximation appreach
implemented on the basis of back propagation neural networlks associated to the proposed control design

strategies (CVFFC and CVFBC).
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INTRODUCTION

Background: One interesting extension of conventional
control was the idea of controlling the variables that
are of real interest by computing its values from
auxiliary measurements (Luyben, 1990). Traditionally,
some mixing problems were solved successfully by
means of conventional computational methods and
means. With the help of existing computational methods
(Andrasik et al, 2004) much more complex types of
computed variables can now be calculated. Several
variables of a process can be measured and all the other
variables can be calculated from a rigorous model of the
process or from virtual sensors based on soft-computing
techniques. For instance, the nearness of flooding in
distillation columns can be calculated from heat input,
feed flow rate and temperature and pressure data.
Another application is the calculation of product
purities in a distillation column from measurements of
several tray temperatures and flow rates by the use of
mass and energy balances, physical property data and
vapour-liquid equilibrium information.

The use of available and sophisticated computational
methods made these rigorous estimators feasible
(Hagan et al., 1996). Tt opens up a number of interesting
possibilities in the control field without limitations in
applying such powerful methods, even with the scarcity
of engineers who understand both control and chemical
engineering processes well enough to apply them
effectively.

A typical class of mixing problems involve linear
models, such the problem of thermal mixing where the
problem 1s to control the temperature of an output flow
from a tank by proportiomng the input flow into the tank
or the problem of concentration mixing where two fluids
of different concentrations are mixed to produce a desired
concentration by varying the mput flow rate. In both
cases, the material and energy-balance equations are the
basis of process modelling.

Some other mixing problems are not linear, such
those problems involving temperature,
viscosity, conductivity, pH or composition among others.
For instance, the liquids used in hydraulic systems
generally exhibit large changes in viscosity with relativity
small changes in temperature. The relative changes in
viscosity per degree is called the temperature coefficient
of viscosity C; being defined as:

pressure,

L

= (1)
udT

T
Where:
T = Actual temperature
P = Absolute viscosity

Pressurized liquids tend to increase viscosity where
this phenomenoen 1s particular evident in oils. At low or
moderate pressure, this increase is relatively small but at
high pressures, the viscosity increases quite rapidly
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(Stern et al., 1958). The exponential relationship between
viscosity and pressure is given by an expression of the
form:

H=pge @

Where:

¢ = Pressure coefficient of viscosity
Mg = Viscosity at atmospheric pressure
1 = Viscosity at pressure P

Equation 2 1s actually only a rough approximation,
since the pressure coefficient « i3 not a constant but
is dependent on pressure, temperature and type of
liquid (liquid components). Because of this rough
approximation, precision control problems require another
alternative modelling method.

Continuous mixing control problem: Since, agitated
vessels are expensive, simple devices, such as in-line
mixers are often considered for composition centrol
systems. Properly applied, these devices are effective but
careful attention to the following design criteria is
required: Reagent delivery hysteresis, loop gain and
neutralization stage interaction (Hoyle and McMillan,
1995). An in-line mixer can be a dynamic mixer, such as a
centrifugal pump or a baffled section of pipe called a static
mixer as shown in Fig. 1. The static mixer provides radial
mixing but little backmixing. Tt can be consideredtobe a
plug flow process dominated by dead time. Disturbances
and noise pass through the mixer unattenuated. With
such a mixer, the best controller response to fast
disturbance and noise 1s no response at all because
any corrective action will arrive too late and will
create yet another disturbance. The advantages of
in-line mixers are its small dead time, loop period and
recovery time. Conventionally, control structures based
in the combination of feedback, feedforward, cascade and
ratio control are used.

Fluid intel 1 _Q_
MV, :
In-line mixer
Fluid intel 2 —>
MV, @ Process Variables (PV)
Fluid intel n _Q_
MV,

Fig. 1: Continuous mixer structure

The mixer exhibits certain pure time delay due to the
inherent transport lag. This time lag D 1s described as the
linear function of fluid flow rate g, the net cross section of
the pipe A and the length of pipe L from the control
valves to the end of mixer which in time domain yields:

p=tA 3)
q

So that the inherent time lag is e expressed in
complex variable domain or Laplace transform domain.
The research carried out describes the proposed control
strategies for a continuous in-line mixer/reactor designed
to optimise the fast chemical reactions required in many of
today’s chemical processes. It allows development and
manufacture of nanomaterials in a process controlled to
the molecular level of mixing. ITn most conventional
chemical reactors, inadequate mixing and mass-transfer
rates limit the value and performance of a fast chemical
reaction. As a result, product yields are low and unwanted
by-products are produced.

Overcoming the following drawbacks is the aim of
this analysis:

»  Avoiding the effect of time lags on feedback control
which suppose an important disturbance on mixing
control loop

¢ Simplification of the conventional control structures

Computed multivariable control strategies: In order to
overcome the drawbacks mentioned in past section, the
following model based computing multivariable control
strategies are proposed, developed and experimentally
validated or tested.

» Computed variable Feedforward-Cascade Control
(FFC)

» Computed variable Estimated Feedback Control
(EFC)

s Computed variable Feedback Control (FBC)

FFC consists in compute the mampulated variables,
as function of the desired controlled variables and input
process variables. EFC consists mn estimate the process
variables to be applied on a feedback control mode. FBC
consists in measure the process variables to be applied on
a feedback control mode.

In order to show the control strategy based m the
computed variable modes, a process consisting in mixing
a fluid at different flows and temperatures to achieve a
desired temperature and flow as process variable output
1s described. The basic and necessary physical equipment
to implement an in-line mixer (Fig. 2). The following
notation 13 used m the in-line mixer process mn Fig. 2:
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Fluid 1 <

Fluid 2 —&

O

Fig. 2: In-line mixer and control equipment: a) Computed
variable FFC and EFC; b) Computed variable FBC

@ = Output energy flow rate
= OQutput mass flow rate measured by the sensor FT
= Output temperature measured by TT
e = Specific heat of the fluid
. = Input temperature of fluid 1 measured by sensor
TTI1
T, = Input temperature of fluid 2 measuwred by sensor
TT2
q; = Mass flow rate of fluid 1 measured by FT1
q; = Mass flow rate of flid 1 measured by FT2

HO e

Such an in-line mixing process can be modelled by
applying first physical principles, such as mass and
energy balances and generally any physical equilibrium
condition. Energy balance 1s:

q,.Ce, T+ q,.Ce, T,=(q,+q,).Ce.T 4

Material balance 1s:

q=q,+q, (5)
Where:
q, = Manipulated Variables (MV)
q; = Manipulated Variables (MV)
Ce,.T, = Plant parameters
Ce,.T, = Plant parameters (P)
T = Process Variables (PV)
q = Process Variables (PV)

Strategy FFC: The aim in FFC strategy is to compute
the mampulated variables, as function of the desired
controlled variables. Assuming both fluids are of same
chemical characteristics so that the specific heat of both
fluids are equal, the math-model is achieved by applying
the model described by Eq. 4 and 5. Hence, a matrix based
math-model is achieved as:

qusm] _ ]’ [qDTD]
q:ls]’\ 1 1 qD

)

CHE

Fluid 1

Output
product

Qaispy m

@ aT

Fluid 2

Fig. 3: The control strategy for FFC of a continmuous
in-line mixer

q;
q,

T, T, | T (6)
110

Which generalized implies that:
MV x[P]=PV (7

Where:
MV

Vector of manipulated variables
[P] = Matrix of plant parameters
PV = Vector of process outputs or controlled variables

Consequently, the desired mampulated variables
specified by its setpoint values from Eq. & are modelled as:

-1
Gisp _ |:T1 Tz} |:qDTD} (8)
Qaismy 11 4o
From Eq. 8 follows that the manipulated variables
setpoints may be generally specified in matrix form as:

MV =[PPV 9
Where:
Quspr Qery — Manipulated variables setpoint or desired
values
qp-Tp, gn = Required output product values satisfying
Eq. &8

Such open loop strategy is depicted in Fig. 3.

Strategy FCC: Starting from the mixing process balance
model described by Eq. 6, the estimated output flow rate
q' and temperature T' can be achieved as:
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Fig. 4: The control strategy for EFC of a continuous
n-line mixer

9.
q;

qlTl
11

qF

{Tl Tz} (10)

Where ¢ T' and ¢ are the estimated controlled
variables. Consequently, the required flow rate setpoints
necessary to satisfy Eq. 10 are given as:

Qisp _‘(qu—q') (TSP_TF) GCq (11
Qasp (qSqu') 7(TSP7T') GCT

G,

GCT

is the vector of feedback controllers and:

‘(qSF - q') (TSF - T')
(qSF _q') _(TSF - T')

15 a matrix of control errors. The control strategy EFC
resulting from Eq. 10 and 11 is depicted in Fig. 4.

Strategy FBC: The aim of computed variable feedback
control FBC 15 to compute the control variables and or
manipulated variables as function of both control errors,
according the control structure described by HEq. 11.

=

Fig. 5: The control strategy for FBC of a continuous
in-line mixer

G,
Ger

Yigp
Qasre

(12)

_ ‘(qsp - q) (Tsp - T)
(qsp - q) _(TSF - T)

Where G, and G are respectively, the process
controllers applied on flow rate control and temperature
control loop. Figure 5 shows feedback control strategy.

Some linear mixing process models: Tn analogous way,
other chemical engineering mixing problems can be solved
by means of proposed methodology. For instance, the
case of mass and energy flow rates mixing control or the
case of energy flow rate, mass flow rate and density are
useful examples.

Mass and energy flow rate
Energy balance:

q,.Cel.T, +q,.Ce2.T, = @ (13)

Material balance:
q+q,=q (14)

Where @ 1s the thermal energy flow rate. The model
in matrix form is:

{(D} _ {ql Hc‘al.T1 Ce2.T2} (15)
q] [a.]f ! 1

The computed variable control by FFC yields the
expression:
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Us) | [Cel.Tl Ce2.T, T {@D} 16)
qz(SF) 1 1 dn

Where @, and q, are the required output product
values. The computed variable control by EFC demands
the following combination of expressions given by Eq. 17
and 18. The estimation of product outputs for the
computed variable control by EFC yields the expression:

{(D} _ {ql }{Cel.Tl CeZ.TZ} a7
9] |4 1 1

(qspfq') ((DSF_(DF)
(qsp 7q') _(((DsP _(D'))

u
8)

q

Geg
Gy

& ql(sp)

(18)

qz(sp)

Energy flow rate, mass flow rate and density: The control
problem solution requires a number of manipulated
variables at least equal to that of the process variables.
For the case of density, mass and energy flow rates,
follows that:

Process balances:

9:+4; 195 =4
q,.Ce, T, +q,.Ce, T, +q,.Ce, T, (19)
=q.CeT=q;

q, /8 +q,/8 +q,/8,=q/8

From Eq. 17, the computed variable control by FCC is
glven as:

q 1 1 1 9ipy
q, || CeTy Ce,T, Ce/T; =] qgpy (20)
q, || /8, 1/8, 1/8, q(D)/S

D

And the computed variable control by EFC 1s:

-1

Yizr) 1 1 1 9
Quyery | =] Co Ty Ce, Ty CeTy | =1 g @D

1/6, 1/8, 1/8, Gy 5

qa(sp)

Model based linear case studies are efficiently solved

as shown earliar. A more serious problem arises when the

products to be mixed yields an output product for which
there is not an acceptable linear model.

Modelling drawbacks regarding mixing processess: Due
to the inherent non-linear behaviour of the studied mixing

processes, it is not possible to describe analytically most
of them based in material and energy balances. For
instance, the energy and mass balance between two
products of different specific heats is given as:

®=q,.CelT +q,.Ce2T, =(q,+q, ).CeT 22)
9,+9, =49

Balances given by Eq. 22 introduce a new unknown
Ce. Ancther equation to complete the set in Eq. 22 will be
necessary to achieve an analytic model based solution. In
the same way, the mixture of two fluids of different
conductivities where the individual conductivities are
function of its respective temperatures must be modelled
under a non-linear function. Such drawbacks are the
motivation to develop ancther strategy where neural
networks based functional approximation 1s a relevant
tool.

PROPOSED NON-LINEAR COMPUTED
MULTIVARIABLE DESIGN TECHNIQUE

To solve the problems for which analytical models
based in physical laws or material and energy balances
does not provide an acceptable or satisfactory solution,
an alternative method based on functional approximation
1s proposed.

In-line mixing problems affected by controlled
variables, such as conductivity, pH, viscosity with
strong dependence on complementary physical variables,
such as temperature and conductivity or pressure
variations are appropriate candidates to be solved using
functional approximation. For instance, the conductivity
0 of a mixed fluid is typically a measure of the mixed
product concentration C. In fact, the mixture of two
fluids of different conductivities where the individual
conductivities are function of its respective temperatures
can be expressed as:

(q’c):f(qpqzacpcz) (23)
(q’c) = f(qlﬂqzaTlaTzachz)

The modes FFC of computed variable control is
given as:

(ql(SF)=q2(SF)):fz(qD=CD=T1=T2=51=Gz) (24)

The control problem seolved by a computed
variable control technique consists in computing the
setpoints of a number of mamipulated variables (flow
rates) to satisfy the required values of a number less or
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Fig. 6: FFC algorithm based on fimctional approximation
techniques
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Fig. 7. Computed variable FFC control strategy based on
functional approximation applied to an in-line mixer

equal to that of the controlled variables. Such definition
implies the computation of Q. Qs such that by
means of an in-line mixing process, it will be possible
to achieve a final product, thus satisfying desired
characteristics, such as flow rate qp, and conductivity C,
as stated by Eq. 23.

Non-linear functional approximation 1s the required
computational techmque widely used which will be
applied to umplement such non-linear continuous in-line
mixing problems. Feedforward neural networks (Hagan
and Menhaj, 1994) are one of the most appropriate and a
popular tool to mmplement non-linear continuous and
differentiable functions and the conjugate gradient
training algorithm is widely used in feedforward training
tasks (Beale, 1972; Charalambous, 1992). Such a
training technique is used in this work to approximate
the behaviour of a concentration mixing problem under

e l
O

[f(cam f©.T)
1

|
q]

Ug,
0
C‘SPV
qHSP)
Uq,
ql
Flu1d1
UqA 2(sP) U l
Fluid 2 iE

Fig. & Computed variable EFC control strategy based on
functional approximation applied to an in-line mixer

—> G, ( »—
A sn _’ q spp

C

Fig. 9: Computed variable FBC control strategy based on
functional approximation applied to an in-line mixer

changes 1n the temperatures and conductivities of the
input fhuds. In Fig. 6, it 1s depicted a general scheme of an
input/output neural network structure to mmplement the
concentration control problem using the strategy FFC by
applying Eq. 23 and 24.

In Fig. 7, the FFC control strategy is applied to
an n-line mixer, using the neural network based
approximation technique.

In Fig. 8, the FFC control strategy 1s applied to
an in-line mixer, using the neural network based
approximation technique.
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In Fig. 9, the FBC control strategy is applied to
an in-line mixer, using the neural network based
approximation techmque.

Case study

Concentration control of a continuous in-line mixer: The
defimition and application of the appropriate mverse
model when applicable (Wachira et al., 2005) because
direct models are also useful, provides a suitable function
to specify the desired final product (qp, Cp) as:

(ql(sp),qz(sp)):f(qD’GD’cpcz) (25)

Consequently, the functional approximation models
given by Eq. 23 and 24 can be implemented on the basis
of backpropagation neural networks as shown in
Fig. 6 and 7.

For the case of mixing two input fluid at different
temperatures and concentrations, satisfying a desired
specified output flow rate and concentration, follows that
the balance for the concentration C, according the control
scheme depicted in Fig. 7 is:

q,C +q,.C,=qC
q,t9; =9

(26)

Taking into account, the non-linear behaviour of the
conductivity as function of the temperature and
concentration follows that:

q,-f(T,6,)+q, f(T,6,)=q.f(T,C)

4,+9: =9

(27)

Or in matrix form:

{%Mf(ﬂ:ﬁl) f(Tz,Gz)}_{f(TaG)} (28)

q, 1 1 q

{ql(gp)“f(ﬂ,cl) f(Tz,csz)}{f(Tac)D} (29)

Q) 1 1 o

Control implementation: Control implementation is
experimentally carried out on a continuous in-line mixer
pilot plant, after a previous preliminary case study by
sinulation of the in-line mixing problem applymg Eq. 29.
In order to achieve the data to implement the functional
approximation model by feedforward neural networks a
database must be constructed. The aim 1s to control the
aqueous solution of NaOH into a range of 0-15% in
weight. Sodium hydroxide also known as caustic soda is

a caustic metallic base characterized by its ability to form
a strong alkaline solution when dissolved m a solvent,
such as water. [t 15 used in the industries, mostly as a
strong chemical base in the manufacture of pulp and
paper, textiles, drinking water, soaps and detergents and
as a drain cleaner being considered as the most used base
in chemical laboratories. The conductivity of a solution of
NaOH
concentration and temperature. Due to this non-linear
characteristic, a typical conductivity measuring system
accuracy is only as good as its temperature
compensation. Since, common solution temperature
coefficients vary on the order of 1-3% per °C, measuring

in water 15 a non-linear function of its

instruments with adjustable temperature compensation
should be utilized. Nevertheless, solution temperature
coefficients are somewhat non-linear and usually vary
with actual conductivity as well. Thus, calibration at the
actual measuring temperature will yield the best accuracy.
To solve the problem of the in-line mixer concentration
measuring system  calibration at any operating
concentration and temperature, a non-linear function of
the conductivity as
temperature must be experimentally achieved for every
solution for containing  the
characteristics of the specific solution is to be used.

function of concentration and

which a database

Concentration control precision 1s an important objective.

The specific database for NaOH: The database relating
concentration C of NaOH i pure water with the
conductivity ¢ in micro Siemens/cm and temperature T in
degrees Celsius is shown in Table 1.

In order to use the experimental data in the neural
networks tool traming task, a normalized data base must
be achieved by converting the available data mnto a range
of -1, 1. After the data conversion the pattern vector data
p is reduced in the order of T/100 and o/100 while the
target vector t 18 reduced in the order of C/100. Hence, the
onginal data once normalized yields the following values:

[0.200.200.200.200.200.400.40 0.40 0.40 0.40 0.60
0.600.600.600.60 0.800.800.800.800.80, 0.80.604
0.20080.6040200806040200.80.60.40.200]
t = [0300.250.160.0500.240.180.080.0400.160.010
0.0520.03 00.135 0.080.0450.02 0]

P

Table 1: Conductivity as function of concentration and temperature for a
solution of NaOH and water

o'l 20 40 60 80

800 30 24 16.0 13.5
600 25 18 10.0 8.0
400 16 8 5.2 4.5
200 5 4 3.0 2.0
0 0 0 0.0 0.0
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Training with matlab neural toolbox: Using the
mformation available in Table 1, correspending to a
solution of NaOH and water, several feedforward NN
structures have been tested against performance to solve
the proposed problem. Acceptable results were achieved
using the neural network structure described by Table 2
where neural network toolbox of Matlab has been used
(Demuth and Beale, 2000a, b). Table 2 shows also the
specified training characteristics. The concentration as
function of temperature and conductivity for NaOH is
contimuous along the range of useful mput wvalues.
Consequently the feedforward neural networle precision
achieved is characterized by a mean square error of about
1.76e-8 which is sufficient.

Functional approximation is implemented on the basis
of feedforward neural networks trained by means of a
Backpropagation traimng algorithm. The conjugate
gradient method called Fletcher and Reeves (1964)
algorithm which provides the required precision (Moller,
1993; Powell, 1977) have been used.

The trained neuwral network is applied after
considering the data reduction due to the normalized task.
In Fig. 10, it 13 shown how to use the tramed neural
network by interfacing the input/output data with
conversion scales Fig. 10. Interfacing trained neural
networks applied on the concentration controllers applied
on the NaOH concentration control.

In-line mixer concentration control simulation: In order
to explore how the proposed feedforward-cascade
strategy on the in-line mixer is performing, a simulation
phase previous to the practical mmplementation 1s carried
out. Using the control scheme described in Fig. 7 and the
trained neural networks under the architecture shown
in Table 2, simulation results are achieved. Figure 11

Table 2: Neural network training characteristics

Action Command
Net initialization net = init (net)
Feedforward NN structure net = newfT (minmax (p), [15,10,1]

and training algorithm
Results display
Training epochs
Training comrnand
NN simulink structure
Training results

{tansig, tansig, purelin}, traincgf)
net.trainParam.show = 5
net.trainPararm. epochs = 300
(net,tr) = train (net, p, t)

gensim (net, -1)
TRAINCGF-srchcha-calcgrad, Epoch
118/300, MSE 1.76e-8/0, Gradient
0.00019%4/1e-6

> 0.001

|T > 0.01
NN —> 100
E

Fig. 10: Interfacing tramed neural networks applied on the
concentration controller applied on the NaOH
concentration control

shows the response of the concentration in % weight
under a change in concentration demand. Figure 12 shows
the input flow rates under an output demanded flow. Tt is
observed that the changes mn flow demand and the
consequent flow rates, the concentration remain closely
to the setpint value or concentration demand.

Tt can be seen in Fig. 12 that during the first 4 sec, the
valve 1 is completely closed. Due to this disadvantage,
the concentration obtained does not match the
concentration demand. So that it is necessary to take into
account hat the final flow and concentration demands
must be mto the range of realizable values in order to
avoid flow valves saturation.

In-line mixer concentration control experimentation: An
in-line mixer based pilot plant is being used to
experimentally validate the proposed control techmique
FFC. The physical structure of the plant is reconfigurable
and permits the configuration shown in Fig. 7 and 9 by
modifying some equipment connections. To carry out the
experimental validation, the structure shown in Fig. 7 is
applied. Such structure exhibits some advantages with
respect to the optional configurations depicted with
Fig. 8 and 9. Such advantages are referred to:

»  Avoiding phase lag due to the additional feedback
controller mainly due to the integral action

*  Avoiding at least a control leop which supposes
beneficial savings regarding the instrumentation,
operational and maintenance costs

14+
EDT: 12 | Concentration demand —//4— Concentration response
22 101
=€
=2 Y Flow demand —
S 3 ¢
=5
2 4
28 o
o= -
S
0 T T T T T T T T T 1
o 2 4 6 8 10 12 14 1l6 18 20
Time (sec)
Fig. 11: Concentration response under changes in

concentration demand and flow demand

9 —_
8 -
7 Flow demand —9
6 -
5 -
4
3 Flow rate fluid 1—9

Flow rate fluid 2—9

Flow demand (kg sec ), flow
rate fluids 1 and 2 (kg sec ')

S — W
1

T T T T T T T
0 2 4 6 8§ 10 12 14 16 18 20
Time (sec)

Fig. 12: Input fluid low rate under changes in flow demand
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Concentration demand —,
4— Concentration response

Change in flow demand—bf

Concentration (% weight),
flow rate (kg sec” ")

Flow rate valve |—
Flow rate valve 2 —
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0o 2 4 6 8 10 12 14 16 18 20
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Fig. 13:Experimental result for the continuous in-line
mixer implemented under the structure of Fig. 7

The experiments carried out were conducted under
the same conditions than for the case study carried out by
simulation which are described m Fig. 13. Simce, the
distwrbances and changes in demanded variables were
applied at times siumnilar to that of the simulated case study,
the comparison of results between the experimental and
simulated data provides us an acceptable msight of the
control performance. Disturbances due to changes in
demanded flow and demanded concentration are
conveniently rejected. Nevertheless measured data is
responsible for the fluctuation of the output
concentration. The total output flow is also under the
mfluence of mput data. As consequence, such control
technique success is restricted to required precision.

CONCLUSION

In this research, some contributions to improve the
procedures to solve linear and non-linear in-line mixing
problems have been presented. These contributions are
based on a new computed multi-variable control strategy,
the FFC algorithm which definitely contributes in:

+  Avoiding the effect of time lags on feedback control
loops which suppose the avoidance of an important
disturbance in mixing control loop

* The inherent simplification of the conventional
control structures

Linear and non-linear solutions were studied and a
non-linear case, experimentally presented. For the general
case, the non-linear MIMO case, a solution based on
functional approximation was illustrated. Functional
approximation was implemented on the basis of
feedforward neural networks tramned by means of a
backpropagation training algorithm; the conjugate
gradient Fletcher and Reeves algorithm which provides
the required precision.

Furthermore, the proposed control algorithm applied
on the expenmental in-line mixer plant, yields satisfactory
results very similar to that predicted by simulation.

With regard to performance and rapid response,
the precision under changes (disturbances) of input
variables, suppose the mam added value of the control
strategy.

Tt can be pointed out as an important advantage that
for the sake of the lack of a conventional mixing tank and
the lack of feedback measuring devices due to proposed
strategies, mimmum time delay on the mixing process
control is achieved.
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