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Abstract: This study presents en H-mfinity controller with LMI region schemes for a lab-scale rotary pendulum
crane system. H-infimty synthesis with pole clustering schemes 1s used to control the hub angle of the arm of
rotary pendulum crane system with very minimal sway angle. The performance of the lab-scale rotary pendulum
crane system is examined in terms of time response specifications of hub angle of the arm, minimal sway angle
of pendulum and mimmal control nput. To examine the effectiveness of the proposed controller, it 15 compared
with LOR controller schemes. The implementation results show that H-infimty controller with confined
closed-loop poles based on LMI region produce a fast tracking capability with very minimal sway and control

input.
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INTRODUCTION

Recently, research mn controlling rotary pendulum
crane system can be categorized into open and closed-
loop control system. For example, input shaping strategy
was applied to the crane system by many researchers
(Ahmad et al., 2009a, 2010a; Blackbum et ai., 2010). This
scheme has been proven to be the best method in
reducing the vibration and sway of any flexible structures
(Vaughan et al., 2010, Ahmad et af., 2009b). Since, mput
shaping strategy 1s sensitive to the system parameters
and could not compensate for the effect of wind
disturbance, they obtained a poor performance results. On
the other hand, feedback control which 1s well known to
be less sensitive to disturbances and parameter variations
(Belanger, 1995) is also adopted for controlling the rotary
pendulum crane system. Recent research on controlling
this type of crane system was presented by Ahmad et al.
(2010b). The researcher had proposed Proportional
Derivative (PD) controllers for position control and
non-collocated PID controller for anti-swing control.
Furthermore, the same researcher also has proposed a
fuzzy logic controller for anti-swing control of rotary crane
system (Ahmad et al., 2011). The proposed fuzzy logic
controller is designed based on the behaviour of sway
motion of pendulum. Besides that a specific study on
actively control the sway motion of rotary pendulum due
to distwbance effect was proposed by Ahmad et al

(2010c). They proposed a comparative assessment study
between optimal and intelligent control. However, all the
previous mentioned literature does not consider mn detail
the desired location of poles in achieving a fast trajectory
tracking of rotary pendulum crane with very minimal sway
motion. In this study, H-infimity synthesis with pole
clustering based on LMI Techmques is used to control
the hub angle of the arm of rotary pendulum crane with
very minimal sway. In order to design the controller, the
linear model of rotary pendulum crane system as shown
mnFig. 1.

The reason for choosing H-infimty synthesis is
because of its good performance in handling with various
types objectives disturbance
cancellation, robust stabilization of uncertain systems,
input tracking capability or shaping of the open-loop
response. Nevertheless, the weakness of H-infinity
controller 1s in handling with transient response behavior

of control such as

and closed-loop pole location mstead of frequency
aspects (Chilali and Gahinet, 1996). As we all know, a
good time response specifications and closed-loop
dampmg of rotary pendulum crane system can be
achieved by foreing the closed-loop poles to the left-half
plane. Moreover, many literatures have proved that
H-infinity synthesis can be formulated as a convex
optimization problem mvolving Linear Matrix Inequalities
(LMI) (Gahinet and Apkarian, 1993; Iwasaki and Skelton,
1994; Packard, 1994). In this case, the normal Riccati
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Fig. 1: Description of the rotary crane system

equation with inequality condition was used. This
behavior will give wide range of flexibility in combining
several constramts on the closed loop system. This
flexible nature of LMI schemes can be used to handle
H-infinity controller with pole placement constraints. ITn
this research, the pole placement constraints will refer
directly to regional pole placement (Chilali et af., 1999). It
is slightly difference with point-wise pole placement
where poles are assigned to specific locations in the
complex plane based on specific desired time response
specifications. In thus case, the closed-loop poles of
rotary pendulum crane system are confined in a suitable
region of the complex plane. This region consists of wide
variety of useful clustering area such as half-planes,
disks, sectors, vertical’horizontal strips and any
intersection thereof (Chilali et al., 1999). Using LMI
approach, the regional pole placement known as LMI
region combined with design objective m H-infimty
should guarantee a fast nput tracking
capability, precise hub angle of the arm positioning and
very minimal sway motion.

controller

MATERIALS AND METHODS

The 2-DOF rotary pendulum crane system with its
payload considered in this research 13 shown m Fig. 1
where 0 and ¢ denote the horizontal angle of the arm and
the sway angle of the pendulum, respectively, r and L. is
the length of arm and pendulum. In this research, the
pendulum and payload can be considered as pont
masses. The lab-scale rotary crane system 1s shown in

15

Fig. 2: Lab-scale rotary crane system

Fig. 2. This study also provides a brief description on the
modeling of the rotary crane system as a basis of a
simulation environment for development and assessment
of the proposed control technmiques. The Euler-Lagrange
formulation 18 considered n characterizing the dynamic
behavior of the crane system mcorporating payload.
Considering the motion of the rotary pendulum crane on
a horizontal plane, the kinetic energy of the system can
thus be formulated as:

T :lJaéz +lm(Lcosa(d)+r(§)2 +
2 2

(1)

%m(Lsina(dt))z + %dez

The potential energy of the beam can be formulated
as:

U =mgl(l-cosa) (2)

To obtain a closed-form dynamic model of the rotary
pendulum crane, the energy expressions in Eq. 1 and 2 are
used to formulate the Lagrangian I, = T - U. Let the
generalized torques corresponding to the generalized
state variables g = {6, a1 be T = 1,0} . Using Lagrangian’s
equation:

) e

(3)
dfaLy oL
dtl 9¢ | 9o

and linearizing ¢ = 0, the equation of motion 1s obtained
as:

(h

(Ja+mrz)é+erd:TfB9
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gmLZ('i+eré+mgL0L =0 (3)

Where:
m = The centre of mass of pendulum and payload
B = The amm viscous damping
I, = The moment of inertia of the arm
J, = The moment of inertia of the pendulum
g = The gravity effect

In this study, the values of the parameters are

definedas m=0.027 kg, I,=1.23x10" kg m*, . = 0.191 m,
r= 006668, B = 0.001 Nm/ad/sec, g =9.81 m sec”. Then,
the state-space representation of rotary pendulum crane
system can be expressed as:

X =Ax+Bu
y=Cx

(6)

with the vector 5 _ [e ab d]T and the matrices A-C are given

by:

0 0 1 0
0 0 0 1

= LB=[0 0 6544 -1711]
0 866 —654 0
0 612 171 ©

c=[1 0 0 0
(7

In this study, an integral state feedback control is
used as a platform to design the proposed controller.
The block diagram of ntegral state feedback control
1s shown m Fig. 3.

The main objective of the proposed controller 1s to
find the gain parameter matnx, F and G such that it fulfills
the design requirement. From the block diagram of Fig. 3,
the control mnput of the system 1s derived as:

(&)

u(t)=Fx{t)+Gv(t)

Where:

Fig. 3: Block diagram of integral state feedback control
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And:

e(t)=r—v(t)

Using new state variable x, = [x" v]" and Eq. &, the
representation of state space equation can be rewrite as:

ol sLollko] o

eft)
Next, at the steady state condition as t-ee, the state

space equation can be written in the following form:

o ﬂﬁiiHﬂu(m)ﬂ 10)

0 =1—Cx({)

By subtracting Eq. 9-10, the state space form 1is
converted to:

(11)

Then, the new control input function is described as:
fi(t)=Fg(t)+ Go(t) = KL, (1) (12)

Finally, a closed-loop state space equation with
controller gain, K can be obtained:

(=AK () Bw (13)
§(t)=C.(1)+ By Do

Where

A, :(A-%—BZK)’EH =[0c 0 0 0 -1|,D,=1D,=0

and w is exogenous input disturbance or reference input
to the system. Let G (s) denote the closed loop transfer
function from w to y under state feedback control u = Kx.
Then, for a prescribed closed-loop H-mfinity performance
v=0, the constrained H_ problem consists of finding a
state feedback gain K that fulfil the following objectives:
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¢ The closed-loop poles are required to lie in some LMI
stability region D contained in the left-half plane
»  Guarantees the I, performance | Gy, <y

Quote from the definition in Chilali and Gahinet
(1996), a subset D of the complex plane is called an T.MI
region if there exist a symmetric matrix ¢€R™™ and a matrix
PBeR™™ such that:

D:{ZECZfD(Z)<0} a4
Where:
f,(z):=o+zp+ 2"

Then, pole location in a given LMI region can be
characterized in terms of the m>m block matrix:
M, (A%, )= a®X, + BO(A,X, )+ @(A,X,)
(15)
Quote from the theorem in Chilali and Gahinet (1996),

the matrixis A, D-stable if and only if there exists a
symmetric matrix X such that:

cl?

M, (A X ) <0.X; >0 (16)

Tn this study, the region S(A, r, 6) of complex numbers
x+Hy such that:

X< —h<(, x+jy‘<r,tan8x<f|y‘ (17)

as shown in Fig. 4 The advantages of placing the
closed-loop poles to this region are the cart position
response ensures a mimmum decay rate A, a minimum
damping ratio ¢ = cosf and a maximum undamped natural
frequency w, =r sinf (Chilali and Galinet, 1996).

Equation 18-20 show the clustering region used in
this study which are A stability region, a disk and the
conic sector, respectively:

M, (ALK )= A X, + X AT+ 20X, <0 (18)

BERLS 1
. X, A X
MDZ(AEI:XDz):—[ " b d D2J<O (19)

M, (A'EPXDB)::
sine( A X, + AdXéj) COS@(ACIXDB —AdXEE)
0
cosO(X,,AT ff‘;de) sin@(fﬁde + AdXEB) )

(20)
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Fig. 4: Region S(A, 1, 6)

where this region is the intersection of three elementary
LMI regions:

(MDmDZmDa (Ad:XD ))

Meanwhile, the H_ constraint is equivalent to the
existence of a solution X >0 to the LMI:

AX_+X. A X.C B
é1Xw - ]511 <0 (21 )
B/ D, -l

Equation 21 is also known as the Bounded Real
Lemma (Boyd et al., 1994). As described before, the main
objective of this study is to minimize the H_ norm of G,,(s)
over all state feedback gains K that enforce the pole
constraints. However, this problem is not jointly convex
in the variables X,-X,;, X and K. The convexity can be
enforced by seeking a common solution:

X=X, =Xy, = Xy, =X >0 (22)

to Eq. 18-21 and rewriting these equations using the
awxiliary vanable Y = KX These changes of variables lead
to the suboptimal LMI approach to H-mfimty synthesis
with pole assignment m LMI regions. As a result, the new
representations of Eq. 18-21 are shown in Eq. 23-26:

Herm| AX+B,Y |+ 23X <0 (23)
* -

sinG(Herm[]\X+]§2YD cosB(HeIm[AX—EZY
sinB(Herm[fﬁX+]§2Y]) =0

(25)
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Herm| AX+B,Y | X[ B,
* —1 D, |<0 (26)
* * —

Where:
Herm[ AX + B,Y | = AX + B,Y + A" + YB]

and * is an ellipsis for terms induced by symmetry
(Clulali et ai., 1999). In this study, the entire LMI problem
1s solved using well known LMI optimization software
which is LMI control toolbox.

To evaluate the effectiveness of the proposed
controller, the results of this study 1s compared with linear
quadratic regulator controller. In order to design the LOR
controller, a linear state-space model of the rotary crane
system in Eq. 6 is utilized. The technique involves
choosing a control law u = 1 (x) wluch stabilizes the origin
(1.e., regulates x to zero) while mimmizing the quadratic
cost function:

= [x(t) Qx(t) + u(t) Ru{t)de (27)

Where, Q = Q"0 and R = R™0. The matrices Q andR
are called the state and control penalty matrices,
respectively. If the components of () are chosen large
relative to those of R then deviations of x from zero will be
penalized heavily relative to deviations of u from zero. On
the other hand if the components of R are large relative to
those of Q then control effort will be more costly and the
state will not converge to zero as quickly. A famous and
somewhat surprising result due to Kalman is that the
control law which minimizes J always takes the form
u = Y(x) = -K; opx. The optimal regulator for a LTI System
with respect to the quadratic cost function above 1s
always a linear control law. With this observation m mind,
the closed-loop system takes the form:

% ={A-BK g )x (28)
And the cost function T takes the form:

T

J:Tx(t)T Qx(t)+ (~Kymx (1)) R{—K, zx(1))dt(Z)

J:Tx(t)T(Q+ KTRE o Jx(t)dt (30)

The designed state feedback controller gain for both
LOR and proposed controller must fulfil the following
specifications:

s Settling time of <3 sec with overshoot <1% and zero
steady state error for the hub angle of the arm

»  Sway motion is <+5 degree

»  Control mput does not exceed +5 mV

RESULTS AND DISCUSSION

Applying the TMI conditions in Eq. 23-26, the
parameter of conic sectors and disk that fulfil the design
requirement is at A = -3, r = 5 and 6 = 30°. Then, the state
feedback gain, K 1s obtained as:

K =[-0.0057 0.0340 —-0.0015 0.0018 0.0051]

with vy = 15.9616. This state feedback gain also guarantees
the H_ performance Il G,,JL<y. On the other hand, using lgr
function in Matlab, the controller gain, K, for LOR is
obtained as:

KLQR:[7.655 —10.5154 1.5407 1.4648 —14.1421]

withR =1 and,

o o O o= O
< o = O O
< h O O O

(R o o BN o

200

Figure 5 shows that the location of poles has been
confined in the selected LMI region. The response of hub
angle of the arm, sway pendulum angle and control input
are shown i Fig. 6-8 for both proposed and LOR
controller. Tt shows that both controller can track the
desired trajectory mput with zero steady state error and
achieve zero sway angle of the pendulum. Hence, in

LMI region

Imaginary axis
(=]
[

55 5 45 4 35 3 a5
Real axis

Fig. 5: Location of poles in selected 1.MI region
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>

—_

— (=]
L 1
(\\\
- S
[~
e
e
\,
N
\
7
\

Sway angle of the pendulum (deg)

[}

<

LQR
Proposed controller

T T T T T 1

1T 2 3 4 s 6 7 8
Time (sec)

Fig. 7: Sway angle of the pendulum response
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Fig. 8: Control input response

overall both controllers successfully fulfil the design
requirement. However, the proposed controller produces
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a fast settling time with very minimal overshoot as
compared to LOQR addition, the
proposed controller also shows a very minimal sway angle

controller. In
oscillation as compared to LOQR controller. In terms of
control input response, the proposed controller is better
than LQR because it exhibits a very smooth and small
input energy which 1s good for the lifetime of de motor.

CONCLUSION

The development of H-mfinity controller based on
LMI region schemes has been developed for rotary
pendulum crane system. The results show that by
confining the closed-loop poles of the rotary crane
pendulum system based on LMI region, one can
successfully achieve the desired specifications and
the designed state feedback gain also guarantees the
H-mfinity performance. The effectiveness of the proposed
scheme has been compared with LQR controller.
Particularly, the proposed controller has produced a fast
nput tracking capability with low nput energy and
minimal sway angle than L.QR controller.
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