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Abstract: This study investigates the hybrid synchronization of identical hyperchaotic Wang-Chen systems,
identical hyperchaotic Lorenz systems and non-identical hyperchaotic Wang-Chen and Lorenz systems. The
hyperchaotic Wang-Chen system and hyperchaotic Lorenz system are important models of hyperchaotic
systems. Hybrid synchronization of the hyperchaotic systems addressed in this study 1s achieved through the
synchronization of the 1st and 3rd states of the master and slave systems and anti-synchromzation of the 2nd
and 4th states of the master and slave systems. Active nonlinear control is the method used for the hybrid
synchronization of hyperchaotic Wang-Chen and Lorenz systems and the stability results are established using
Lyapunov stability theory. Since, the Lyapunov exponents are not required for these calculations, the proposed
method is quite effective and convenient to achieve hybrid synchronization of the hyperchaotic systems
addressed in this study. Numerical simulations are provided to illustrate the effectiveness of the various
synchronization schemes proposed in this study.
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INTRODUCTION

Chaotic systems are dynamical systems that are
highly sensitive to initial conditions. This sensitivity is
popularly known as the butterfly effect (Alligood et al.,
1997). Chaos 1s an important non-linear phenomenon
and has been widely studied in the last two decades
(Alligood et al., 1997, Pecora and Carroll, 1990,
Lakshmanan and Murali, 1996, Han et al, 1995,
Blasius et ai., 1999; Feki, 2003; Murali and Lakshmanan,
1998; Yang and Chua, 1999, Ott et al., 1990; Park and
Kwon, 2003; Yu and Zhang, 2006, Liao and Tsai, 2000;
Konishi et al., 1998; Ge and Chen, 2004; Wang and Guan,
2006; Zhang and Zhu, 2008; Chiang et al, 2008;
Qiang, 2007; Yan and Ti, 2006; Ti et al, 2007,
Rui-Hong et al., 2010; Wang and Chen, 2008; Wang and
Wang, 2007).

Pecora and Carroll (1990) introduced a method to
synchronize two identical chaotic systems and showed
the possibility of completely synchromzing some chaotic
systems. From then on, chaos synchronization has been

explored in a wide variety of fields including physical
(Lakshmanan and Murali, 1996), chemical (Han et o,
1995), ecological (Blasius et al., 1999) systems, secure
communication (Feki, 2003; Murali and Lakshmanan,
1998), etc.

Since, the seminal research by Pecora and Carroll
(1990) a variety of impressive approaches have been
proposed for the synchronization of chaotic systems such
as PC Method, Sampled-data Feedback Synchromzation
Method (Yang and Chua, 1999), OGY Method (Ott af af.,
1990), Tine-delay Feedback Method (Park and Kwon,
2003), Backstepping Method (Yu and Zhang, 2006),
Adaptive Design Method (Liao and Tsai, 2000),
Sliding-mode Control Method (Konishi at al., 1998), etc.
So far, many types of synchronization phenomenon have
been studied such as complete synchronization
(Pecora and Carroll, 1990; Lakshmanan and Murali, 1996),
phase synchronization (Ge and Chen, 2004), generalized
synchromization (Wang and Guan, 2006), anti-
synchromization (Zhang and Zhu, 2008, Chiang et al,
2008), projective synchromzation (Quang, 2007), etc.
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Complete Synchronization (C5) is characterized by the
equality of state variables evolving m time while Anti-
Synchromzation (AS) characterized by the
disappearance of the sum of relevant state variables
evolving n time.

Projective Synchromzation (PS) is characterized by
the fact that the master and slave systems could by

18

synchronized up to a scaling factor whereas in
Generalized Projective Synchronization (GPS), the
responses of the synchronized dynamical systems
synchronize up to a constant scaling matrix . [t 1s easy to
that the complete synchronization

synchronization are special cases of the generalized

and  anti-

projective synchronization where the scaling matrix ¢ =T
and ¢ = -I, respectively.

In hybrid synchronization of chaotic systems
(Rui-Hong et al, 2010), one part of the system is
completely synchronmized and the other part is anti-
synchronized so that Complete Synchronization (CS) and
Anti-Synchromization (AS) co-exist in the system. The
coexistence of CS and AS is very useful in applications
such as secure commumnication, chaotic encryption
schemes, etc.

In this study, researchers use the active non-linear
control method for the hybrid synchronization of identical
and different hyperchaotic Wang-Chem system and
hyperchaotic Lorenz system (2007). For the hybrid
synchronization of the 4-D hyperchaotic systems
considered in this study, the 1st and 3rd states of the
master and slave systems are Completely Synchronized
(CS) and the 2nd and 4th states are Anti-Synchronized
(AS). The active nonlinear control method is a simple and
effective method for the hybrid synchromzation of
hyperchaotic systems.

MATERIALS AND METHODS

Hybrid synchronization of identical hyperchaotic
Wang-Chen systems: In this study, we consider the
hybrid synchronization of identical hyperchaotic Wang-
Chen systems (Wang and Chen, 2008). Thus, the master
system 1s described by the Wang-Chen dynamics:

X, =alx, — X, )+ X,X;

X, =CX, —X;X; —X; —0.5%,

(1)

X, = XX, — 3X,

X, =0.5%,%x; —bx,

Where, x, (1= 1, 2, 3, 4) are the state variables and a-c
are real parameters with a>0, b<0 and ¢=0. When a = 40,
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Fig. 1: State portrait of hyperchaotic Wang-Chen system
b = 1.7 and ¢ = 88, the Wang-Chen system (1) 1s
hyperchaotic as shown in Fig. 1. The hyperchaotic
Wang-Chen dynamics is also taken as the slave system
which is described by the dynamics:

yi=aly, —y)tyys tu
Yo=oy — vy, ¥ 05y, T
Y3 =¥iy: —3y; tu,

v, =0.5y,y, —by, +u,

(2)

Where, v, (i = 1, 2, 3) are the state variables and
u (1 =1, 2, 3) are the active controls. For the hybrid
synchromzation of the identical hyperchaotic Wang-Chen
systems (1 and 2), the errors are defined as:

S SR S]
&, =¥ TX, (3)
S 7YX,
€, =Yy, TX,

From the error Eq. 3, it is obvious that one part of the
hyperchaotic systems (1 and 2) is completely
synchronized (1st and 3rd states) while the other part is
anti-synchronized (2nd and 4th states) so that Complete
Synchromzation (CS) and Anti-synchronization (AS)
co-exist in the synchronization process. A simple
calculation yields, the error dynamics as:

& =ale, —e)) —2ax, + y,¥; — X,X; T 1,
e, =ce, —e, —0.5e, + 2cx, — vy, — XX, + 1, (4)

&; = 3e, t ¥y, ~XX; T,

&, = —be, + 0.5(y,y, + X, X;)+ 1,
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Researchers consider the nonlinear controller defined

by:
u, =-ae, + 2ax, — y,¥; t X%,
u, =—ce + 0.5e, —2Zcx, +y,y, T XX, (5)
Uy =¥y, t X%,
u, =(b-1le, —0.5(yy, +xx,)

Substitution of Eq. 5 inte 4 yields, the linear systemu:

e =-ag, e, =—¢, & =3¢, €&, =—¢, (6)

The candidate Lyapunov function is taken as:
Vie)= leTe = l(ef + eg + ei + ei)
2 2

Which is a positive definite function on R*. A simple
calculation gives:

Vie)=—ae’ —el —3e —¢

Which is a negative definite function on R* since,
a>(). Thus, by Lyapunov stability theory (Hahn, 1967), the
error dynamics (6) 1s globally exponentially stable.

RESULTS AND DISCUSSION

Theorem 1: The identical hyperchaotic Wang-Chen
systems (1 and 2) are globally and exponentially hybrid
synchronized with the active non-linear controller (5).

Numerical simulations: For the numerical simulations,
the 4th order Runge-Kutta Method with step-size
h =107 is used to solve the differential Eq. 1 and 2 with
the active non-linear controller (5). The parameters of the
1dentical Wang-Chen systems (1 and 2) are selected as:

a=40,b=-17, c =88

So that, the systems (1 and 2) are hyperchaotic. The
initial values of the master system (1) are chosen as:

X,(0)=15, x,(0) =7, x,(0) =12, x,(0)=9

and the initial values of the slave system (2) are chosen
as:

yl(o) =4, Y2 {0)=14, ya(o) =6, Y4(0) =2

Figure 2 shows the hybrid synchromzation of the
1dentical hyperchaotic Wang-Chen systems (1 and 2).
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Fig. 2: Hybrid synchronization of the hyperchaotic
Wang-Chen systems

Hybrid synchronization of identical hyperchaotic
Lorenz systems: In this study, we onsider the hybrid
synchromization of 1dentical hyperchaotic Lorenz systems
(Wang and Wang, 2007). Thus, the master system 1s
described by the Lorenz dynamics as:

X = 00X, —X )X,
A, =K X, XX, (7
Ky = XX, 7BX3

X, = XX, —TX,

Where, x, (1= 1, 2, 3) are the state variables and «, 3,
v, T are positive real parameters. When ¢ and 10,
B =873,y =28andr =1, the system (7) is hyperchaotic as
shown in Fig. 3. The hyperchaotic Lorenz dynamics is
also talken as the slave system which is described by the
dynamics:

Vi =0y, ¥t y. Ty
Yz =V Y, VY, T, (8)
¥y =v,¥, — By, tu,

Yo =TV, 1Y, T,

Where v, (i=1,2,3,4) are the state variables and
w (=1, 2, 3, 4) are the active controls. For the hybrid
synchronization of the identical hyperchaotic Lorenz
systems (7 and 8), the errors are defined as:

e =Y, X =Y, TX (9)
8, =¥; "X, & =Y, TX,
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Fig. 3: State portrait of hyperchaotic Lorenz system

From the error Eq. 9, it is obvious that one part of the
hyperchaotic systems (7 and 8) 1s completely
synchronized (1st and 3rd states) while the other part 1s
anti-synchromzed (2nd and 4th  states) so that,
Complete Synchronization (CS) and Anti-synchromzation
(AS) co-exist in the synchronization process. A simple
calculation yields the error dynamics as:

& =afe, —e)te, —20x, —2x, +u
&, =ve —e, +27, —V¥, XX, TU, (10)
é:s = _Bea VY, XX T,

€ =T, —¥¥; —XX; T,

Researchers consider the non-linear controller
defined by:
u, =-0e, —e, + 20X, + 2x,
0, =—Ye —2vX, +¥\Y; T XX, (11)

U = -y, + XX,

U, =¥¥: XX,

Substitution of Eq. 11 and 10 yields, the linear
system:

B (12)

&, =—fe;, & =-re,

The candidate Lyapunov function 1s taken as:

1 T 1 2 2 2 2
V(e):ge e:E(e1 +ez+e3+e4)
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Fig. 4. Hybnd synchromzation of the hyperchaotic
Lorenz systems

Which is a positive definite function on R'. A simple
calculation gives:

Vie) = —oel — e’ — Pe’ —re’

Which is a negative definite function on R* since, «,
B and r are positive real constants. Thus, by Lyapunov
Stability Theory (Hahn, 1967), the error dynamics (12) 1s
globally exponentially stable. Hence, we obtamn the
following result.

Theorem 2: The identical hyperchaotic Lorenz systems
(7 and 8) are globally and exponentially hybrid
synchronized with the active nonlinear controller (11).

Numerical simulations: For the numerical simulations,
the fourth order Runge-Kutta Method with step-size
h =107° is used to solve the differential Eq. 7 and 8 with
the active nonlinear controller (11). The parameters of the
1dentical Lorenz systems (7 and 8) are selected as:

o =10, Bzg, v=281=1

So that, the systems (7 and 8) are hyperchaoctic. The
iitial values of the master system (7) are chosen as:

x,(0) =20, x,(0) =11, x,(0) =3, x,(0)=12

and the imtial values of the slave system () are chosen
as:

¥1(0) =14, y,(0) =5, y,(0) = 20, y,(0) =8

Figure 4 shows the hybrid synchromzation of the
identical hyperchaotic Torenz systems (7 and §).
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Hybrid synchronization of hyperchaotic Wang-Chen and
hyperchaotic Lorenz systems: In this study, we consider
the hyperchaotic Wang-Chen system (Wang and Chen,
2008) as the master system which is described by the
dynamics:

X =alx, —x )T XX,

—0.5x, (13)

X, =CX, XX, —X,
X, = X%, 3%,

X, =0.5x %, —bx

Where, x, (1=1, 2, 3, 4) are state variables and a-c are
real constants with a=0, b<0 and ¢>0. When a = 40,
b = -1.7 and ¢ = 88, the Wang-Chen system (1) 1s
hyperchaotic. We consider the Lorenz system (Wang and
Wang, 2007) as the slave system which 1s described by
the dynamics:

Vi=oly, Yty Ty
Y2 =W, CY, TV Y,
V5 =y\¥, —By; +u,

Yo =YY, IY. T,

(14)

Where, vy, (i=1, 2, 3, 4) are the state variables and u,
(=1, 2, 3, 4) are the active controls. Whena =10, = 8/3,
v = 28 andr = 1, the system (14) 1s hyperchaotic. For the
hybrid synchromization of the hyperchaotic systems
(13 and 14), the errors are defined as:

& =Y —X, € =Y, tX,; (15)

€; =Y, X5 € =¥, T,

From the error Eq. 15, it is obvious that one part of
the hyperchaotic systems (13 and 14) is completely
synchronized (1st and 3rd states) while the other part 1s
anti-synchronized (2nd and 4th states) so that, Complete
Synchronization (CS) and Anti-synchronization (AS) co-
exist in the synchromzation process. A simple calculation
vields the error dynamics as:

& =afe, —¢)te, +(a—o)x —(a+wx,
—X, XX, t 1,

& =Ye —e, T{CTVIX —¥Y, ~XX,
-0.5%, +u,

& =—Pe; + B3PI, T yy, X%, T U,
re, + (r—b)x, —y,y, +0.5x,%, +u,

) (16)
&, =-

We consider the non-linear controller defined by:

59

u, =—oe, —e, —(a—-o)x, +(a+ox, +x, +x,X,
u, =—ye —(c+V)x, +0.5%, + vy, + XX,

u; = (B30, -y, T XK,

u, =(b-1)x, +y,y, —0.5xx,

(17)

Substitution of Eq. 17 into 16 yields, the linear
systermn:

g =—0g, &, =—¢, (18)

e, =—Pe,, &, =-Te,
The candidate Lyapunov function is taken as:

1 T 1 2 2 2 2
V(e)zae e:E(e1 +e2+ej+e4)

Which is a positive definite function on R*A simple
calculation gives:

Vie) = —ael —e’ — Bel —re!

Which is a negative definite function on R* since, «,
B and r are positive real constants. Thus by Lyapunov
Stability Theory (Hahn, 1967), the error dynamics (18) 1s
globally exponentially stable. Hence, we obtain the
following result.

Theorem 3: The hyperchaotic Wang-Chen system (13)
and hyperchaotic Lorenz system (14) are globally and
exponentially hybrid synchronized with the active
non-linear controller (17).

Numerical simulations: For the numerical simulations,
the 4th order Runge-Kutta Method with step-size
h=107"1s used to solve the differential Eq. 13 and 14 with
the active nonlnear controller (11). The parameters of the
identical Wang-Chen system (13) are selected as:
a=40,b=-17 ¢c=88

So that, the Wang-Chen system (13) i1s hyperchaotic.
The parameters of the Lorenz system (14) are selected as:

o =10, Bz%, v=28r1r=1

So that, the Lorenz system (14) is hyperchaotic. The
iitial values of the master system (13) are chosen as:

x,(0)=30, x,(0) =24, x,(0) =15, x,(0)=6
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Fig. 5: Hybrid synchronization of the hyperchaotic
Wang-Chen and hyperchaotic Lorenz systems

The initial values of the slave system (14) are chosen
as:

Y1(0) =12, YZ(O) =10, Y3(0) =23, Y4(0) =17

Figure 5 shows the hybnd synclromzation of the
different hyperchaotic systems (13 and 14).

CONCLUSION

In this study, researchers deployed active nonlinear
control method for the hybrid synchronization of the
following three types of hyperchaotic systems:

¢ Tdentical hyperchaotic Wang-Chen systems

*  Identical hyperchaotic Lorenz systems (2007)

*  Non-identical hyperchaotic Wang-Chen system and
hyperchaotic Lorenz system (2007)

The global hybrid synchronization results for the
cases A-C are established using Lyapunov Stability
Theory. Numerical simulations are shown to illustrate the
effectiveness of the proposed hybrid synchromzation
schemes for the cases A-C. Since, Lyapunov exponents
are not required for these calculations, the proposed
active nonlinear control method 15 effecive and
convenient to achieve the hybrid synchronization of the
hyperchaotic systems addressed in this study.
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