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Abstract: The Generalized Predictive Controller (GPC) in transfer function representation is proposed for the
cascade control task. The recommended cascade GPC (CGPC) applies one predictor and one cost function that
results in several advantageous features: The disturbance regulations of the mmner and the outer loops can be
totally decoupled; the inner disturbance regulation is well damped, the typical overshoot of the traditional
cascade control structure 1s avoided. The investigation 1s based on simulation experiments of heat exchanger

model identified from SISO input and output data.
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INTRODUCTION

The GPC method was proposed by
Clarke et al. (1987) and Clarke (1988) and become most
popular MPC methods both in industry and academia. Tt
has been successfully implemented in many mdustrial
applications, showing good performance and certain
degree of robustness. Tt can handle many different control
problems for a wide range of plants with a reasonable
mumber of designs variables which have to be specified
by the user depending upon prior knowledge of the plant
and control objectives.

The basics idea of GPC is to calculate a sequence is
to calculate a sequence of future control signals in such
way that it minimizes a multistage cost function defined
over prediction horizon. The index to be implemented is
the expectations of a quadratic function measuring the
distance between the predicted system output and some
reference sequence over the horizons plus a quadratic
function measuring control effort.

GPC has many 1deas in common with other predictive
controllers since, it 18 based on some differences. As will
be seen later, it provides analytical solution (in absence
of constraints), it can deal with unstable and nonminimum
phase plants and incorporates the concept of control
horizons as well as the consideration of weighing of
control increments in the cost functions. The general set
of choices available for GPC leads to a greater variety of
control objective compared to the other approaches, some
of which can be considered as subsets or limiting cases
of GPC.

MATERIALS AND METHODS

Cascade control: Cascade control is one of the most
popular structures for process control (Maffezzoni ef af.,
1990) as it is a special architecture for dealing with
disturbances. The core idea 1s to feed back an
intermediate variable that lies between the disturbance
injection point and the controlled process output. The
classical cascade control structure 1s shown in Fig. 1.
Where w(t) is the reference signal, u(t) is the control
signal and v, (t) are the intermediate variable and its
reference signal, e(t) are distuwbances and y(t) is the
process output.

The control task 1s to control the y(t) output and to
track the w(t) reference signal, meanwhile the process is
charged with different disturbances, e, and e, The
cascade structure assumes that there is an intermediate
measurable variable in the process thus, the process can
be separated into two sub-processes. Compared to a
traditional control loop, a second control loop is
introduced mncluding only the immer process. The goal of
the inner controller (or also called secondary controller) is
to attenuate the effect of the inmer ¢, disturbance before
it significantly affects the process output. This can be
realized if high gain can be applied in the secondary
controller thus, the secondary loop can quickly regulate
the disturbances of the inner loop. The outer controller
{or so called primary controller) provides the reference
signal for the secondary controller. The cascade
structure’s main benefits canbe exploited only in certain
circumstances (Astrom and Hagglund, 1995):
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Fig. 1: Cascade control structure

*  The inner process has significant nonlmearities that
limit the loop performance

*  The outer process has significant delay or limits the
bandwidth in a basic control structure; the rule of
thumb 1s that the average residence times should
have a ratio at least 5

¢  Essential disturbances act in the inner loop. Even
though the cascade control is a traditional method
that has been applied for decades, mnproving the
performance of the structure 1s still a core 13sue

Some books provide fundamental tuning methods for
conventional cascade control systems (Shinskey, 1996;
Astrom and Hagglund, 1995, Luyben, 1990).
Improvements in the tuning of the traditional PID
controller in cascade control scheme have been
developed (Lee ef al., 1998, Huang et al., 1998, Tan ef al.,
2000; Soeterboek, 1992; Song et al., 2003). Meanwhle
new solutions are also presented, Semino and Brambilla
(1996), Lestage ef al. (1999) and Kaya (2001) proposed a
cascade control scheme combined with Smith predictor
proposed a new two degree of freedom cascade structure
that can decouple the tracking and regulation
performance and permits the tuning of the robustness of
the mner and outer process separately. The robustness of
the cascade controller was also given m the research of
Maffezzoni et al (1990). Their solution provided an
independent design of the cascade control loops and
mtrinsic avoldance of windup problem. The number of
cascade applications in the literature 1s enormous.

In the following, only a few applications related to
the predictive control concept are going to be
presented (Maciejowsky, 2002, Maciejowski ef al, 1991,
Richalet et al., 1976, 1978; Qin and Badgwell, 2003) the
application of DMC algorithm in the outer loop of the
cascade control of a chlorine producing plant. The DMC
gave the set point values for the multivariable compressor
control. The good behavior of the proposed control
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structure was demonstrated on a real-time simulation of
the plant An interesting application of the MUSMAR
algorithm for control of a distributed collector solar field
was given by Silva et al (1997). The control problem
consisted of keeping constant the temperature of the field
outlet o1l by acting on the circulating oil flow used for
heat transfer. In the inner loop, a MUSMAR controller
and in the outer loop a PID controller was applied.
Difficulties arose from the time varying transport delay of
the process. The obtained experiences were generalized to
a wide class of industrial processes (Barin, 1989, Camacho
and Bordons, 2004; Goodwin et al., 2001; Hagglund, 1996)
reported a successful application m sludge density
control n a sugar factory. In both mnner and outer loops
GPC, controllers were applied. The study showed the
tuning of the controllers regarding the robustness
behaviors. The emphasis was put on how simple and
powerful the predictive control algorithm was
(Shaoyuan et al., 2000) applied cascade GPC to a biaxial
film production line. In the proposed solution, the
traditional control scheme was applied with GPC
controllers in the primary and secondary loop as well
(Hedjar et al., 2000, 2003). Researched the application of
the MPC for control of an induction motor. They
proposed the application of a nonlinear predictive
controller in both the inner and the outer loop.

Cascade generalized predictive controller
Formulation of generalized predictive controller: The
cascade generalized predictive controller 1s derived from
the generalized predictive controller. First, the GPC and
its main properties are presented to advance the
investigation of the properties of the CGPC algorithm.

The predictive control concept: The predictive control is
based on the process model applied for the prediction of
the process behavior. The basic idea of the predictive

control 18 shown m Fig. 2. The predictive controller
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calculates such future control sequences that result m the B(z™) o e B2 (4)
process output close to the desired output on the oy~ Bz )+ -1
A7) Alz™)

prediction horizon. Tn the receding Control horizon
controller, the whole control sequence is not applied only
1ts first element and the optimization procedure 1s repeated
i the next sampling instant. The controller may have
several design parameters. The most important ones are
the optimization horizon, the control horizon and the
weighting factors. In the cost function, the error between
the reference signal and the predicted process output
appears on the time range between the mimmum (H, ) and
the prediction horizon (IH) and also the control signal
values are included according to the control horizon. The
optimization horizon shows which future error values
should count in the cost function. The control horizon
(H,) value means how many changes in the control signal
are allowed n the future.

The process model: Tn predictive controllers, different
process models can be applied. In the following, the most

COImMIMomn ones are presented.

Transfer function model: The process output signal 1s

given by:
B{z™
t)= t-1 (1)
y(t) A u(t—1)
Alzh=1l+az ' +az’+-———a z™ @)
B(z)=b,+bz'+b,z  +————b 2™
The prediction can be expressed as:
-1
Gtek/t) = B(Zfl) wt+k—1/t) (3)
A(z™)
To separate the effects of the past and future inputs

a diophantine equation must be solved:

Replacing it mnto the prediction follows:

Jt+k/t)=E, (2 YUT+K - 1/t) + sz)u(t) (3
A(z™)

This model is already able to describe unstable
processes (i.e., integrative process) and another
advantage is the limited number of required parameters.
The disadvantage of the model 1s that a priori knowledge
1s required about the orders of the A and B polynomials.

Disturbance model: The disturbance model has special
importance in the predictive controllers. The most general
one is the Controlled Autoregressive and Integrated
Moving Average (CARIMA) in which the difference
between the measured output and the output calculated
by the process model given by:

_cEh
Dz

n(t) &t

Where the denominator DX(z")includes the integrator,
generally chosen as (1- ') A(z'"); £(t) is a white noise
with mean value of zero and the polynomial C is identified
or chosen as a controller parameter. To calculate the
predicted error, the following diophantine ecuation must
be solved:

Ciz™h
Dz

-k Fk(zil)

: ©
D{z )

= Ek(zil)"" q

The prediction of disturbance:

15
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gi;;é(H ki) = B, (7)E

Alt+ K/ 1) =
(7
E(z")

(t+k/t)+m

&(t)

Since, the order of the E, polynomial is <k and the £(t)
signal 13 a white noise with zero mean, the expected value
of the first term on the right side 13 0. Thus, the prediction
of the future disturbance 1s:

F.iz™")

2 ®
D(z™)

At + k/t) = 20

The free and forced response: In the GPC, a predictor 1s
required to estimate the future outputs with its
disturbances. Combining the process model with the
disturbance model, it 13 possible to derive the predictor to
estimate the future values of the output signal based on
the information available up to the actual t time instant.
Taking the transfer function model and the CARIMA
model, the output of the process 1s given by:

Czh Gy B2 9
D(z’l) =E.(z )+q D(z’l) 9)
_ Bz B Cz™h) 10
y(t)fA(Zfl)u(t mD(z’l) E(t) (10)

where, D(z™") = (1 - z") A(z™") and the delay of the
process is included in the B polynomial by zero first
coefficients of the polynomial. The k-step ahead output
prediction is given by the disturbance term can be
separated into available and future information as in the
previous section:

N _ Bz B Ciz™H
Ft+k/t)= A(Z_l)u(t+ k-1+ D(Z_l)é(t+ k/t) an
L EBEODEY | G RE
Czh) Clz™)
Multiplying Eq. 11 with this expression follows:
. _E(ZND)
vit+k/t)= )

BizhH L CEzh 12
L\(z-l)“(” k-1)+ D(z")é(t+ k)} + (12)
F.(z')q"| Bz s CE@H

o L\(zl)u(t +k-1)+ D(z")‘:(H k)}
Equivalently:
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E,(Z B )1-77)

Pt kity= cizh +
ult+k-D+E (z &t +k)
B(zha"| Bz . Cz)
Sz | AEEH u(t=D D(zH £

Considering that the expected value of the second
term of the first row is equal to 0 and the term within the
brackets in the second row is equal to the actual process
output, the prediction of the process output is given by:

E,(z )Biz )
cz™h

F.(zh
D) y(t)

yit+k/t)= ut+k-1+

(13)

The effect of the control signal 1s included m the first
term on the right side. To separate the effect of the past
and future control actions, the following diophantine
equation must be solved:

Lk(z_l)

cEzh

E.(z Bz

(14)
Czh

=G z+q*

The final form of the predictor 1s:

Yt+k/0=G (2 HAut +k—1) +

L.iz") F.(zh
Ciz™H Ciz™H

(15)

Au(t -1+ y(t)

In the predictive control literature, the first term on
the right side is called forced response ¥s. and the rest is
called free response ¥.. . The free response expresses the
prediction of the process outputs based on the past
inputs and assumed to keep constant the last control
signal.

The free response also mcludes the already measured
disturbances and their effect on the futwe outputs
{expressed in the last term of predictor). The forced
response corresponds to the prediction triggered by the
actual and future control signal.

The cost function: Different cost functions can be applied
in the predictive controllers. In the generalized predictive
controller, the following form 1s usual:

HAwy = 3 p G+ §/0- wit+ I +

J=Ha

a6)
> pa(iAutt + /]
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where, w is the reference signal. The cost function
includes the predicted errors and the control actions. The
tuning parameters of the controllers can be properly seen
in the cost function: Hm the minimum horizon, specifying
the beginning of the horizon in the cost function
from which point the output error is taken into
account.

Since, the control action affects the process output
only after the process delay, the minimum horizon is
suggested to be equal or higher than the process
delay.

Hp the prediction horizon, specifying the end of the
horizon n the cost function in other words the last output
error that 1s taken into account He the control horizon, the
number of consecutive changes in the control signal
P, P; the weighting vectors, enabling the weighting of the
terms in the cost function also with respect to their
appearance in time.

The control algorithm: The analytical mimmization of
the cost function is possible if no constraints on the
control signal are assumed. The cost function is the
following:

JAw) = 3 e G+ 50— wit+ F +
=1 (17)
S ps(lAuct + /0T

1=1

Introducing the free and forced response notation
and organizing the signals into vectormatrix form, the
cost function 1s;

JiAwY= (GAu+ §, .~ w)'T,

(18)
(GAu+ ¥, —w)+Au'T,Au
Where;
Ve (L H) L”m(zil)
N :A : - Auft—1
o =M a0 = L) [T
Ve (t+d+H,) LHP(Z—I) (19)
Fy (z™)
T Au(t) wit+H_)
HRE Y(t,)l Al Au(t+1) i w(t+k)
C(z™) .
i Au(t+H)) wit+H,)
FHP (z™)

I =diaglp,(H,).p(Hy + Db (1 9
I, = diag[p,(1),p,(2),.......p, (H,]

and;
gmm O O
G- .gmm.ﬂ g.min 0 (21)
Zu, Bmp-t Bup-ny,
Where;

G zh=g, +g(z )+ ..+ gkq'k (22)

These g; coefficients are the same as the parameters
of the step response model. Equation 18 can be written in
the following form:

J(An) = %AuTHAu +bTAu + 1, (23)

Where:
H=2(G'T\G+T,)
b’ =2(§,., - w)'T,G (24)
fU = (S’ﬁ'ee - W)Trl(s\/&ee - W)

The minimum of the T cost function assuming the
absence of any constraints can be found by making
the gradient of T equal to zero which leads to the
solution:

Au=-H"b=-(G'[\,G+I,)'G\(§,. -w)’ (23

As 1t was already mentioned, the GPC 15 a receding
horizon controller and thus, the first element of the
calculated control signal sequence to be applied on the
process. The procedure of minimization of the cost
function is repeated in the next sampling instant. The
applied control signal is:

Aut)=kiw —¥,.) (26)

where, K 1s the first row of the matrix (¢'r,G+I,)"'al, .
Assuming that the future reference trajectory keeps
constant along the prediction horizon (or equivalently it
1s unknown and therefore, assumed to be constant) the
control algorithm is the following:

Au(t) w(t)g}“kl KL < KF T (27)
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Where, k, coefficients are the elements of the K vector
and:

Ly (&) ()
L Ly, (20 and,f = E{(Z—l) (28)
LHP(Z_I) F (2"

The derived controller is the GPC. The numerous
predictive controllers are the following:

*  The application of the CARIMA process model; the
use of long-range prediction over a finite horizon

*  The weight of the control increments; the application
of the control horizon concept

Closed loop relations of the GPC: The derived control
algorithm n Eq. 27 can be written in the followmng form:

< o, M) T v
au=wity S kwit— S kL -2V Sep Y0 (29)
N0 2RO DRl 2R

The GPC controller can be easily transformed mto the
R-5-T structure by some simple manipulations:

Au(t){c(zl)Jr q’1 % leiJ

i=Hp,

(30)
=)y kw3 kEy(h)

The R-S-T control law 1s:
Au(t)= 8z )= wOT(Z H-yRz"y  GD

The R-S-T polynomials: In the following the T polynomial
1s not:

Hp
Clz)+q" > kL,
Sz = mle

Hp
Z k1L1
1=H,

(32)

Hp
> kE(zh)
R(z )= T(z )= C(z )
2k
1=H,
Distinguished and only the C polynomial notation is
going to be applied. The control loop in R-3-T form is

shown in Fig. 3. In the following, the R-5-T forms of the
controllers are shown to facilitate the derivation of certain
properties of the control loops.

The actual codes of the sumulations are always
implemented as the original algorithm based on Eq. 26
based on Fig. 3 by a couple of mampulations the output
can be given by:

C(z™") B(z™ S
S(zHA Alz ™)

YO e R BEY

S(zHA (Y A(Z)
Ciz™h
AA(ZY
+ C{z )Rz Bz S
S(zha Gz Az

wit)+

(33)

&t

or equivalently:

T e C(—1271)B(Zii1)271 Wb+
S(zYA(z )+ R(z YB(z )z (34)
1 (_31(2")8(2_’11) S
S(z)A(Z )+ R(ZB(z )z

y(t)

Where:
Az =AA(Z)

The characteristic polynomial of the transfer function
can be decomposed to obtain the C polynomial as a
factor. To find the C polynomial in Eq. 12, the required
marnipulations are shown in the following. From the first
Diophantine equation it follows:

I

1

KE@E ) =Czh) Hz kz - Az Hz KE (zhe (35)
i=Hy, i=H,

1

Il
jan)

m

From the second diophantine Eq. 4, it follows:

le(t)

Cz YDz )
+
¥()
o Ys(E") a4 Bl YAET) ] ’

REYC(E)

Fig. 3: The R-3-T control structure of the GPC
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Bz % kE iz ")z =

1=Hy

Hp Hp
CZHY KG(Z7 + > kL(Z)7
1=H, 1=H,

(36)

Combining these two equations and the definition of
the R polynomial:

C
BR(z )=+
2k
o Ho (37)
B m ] KL
{B S kZ"-AD leiz"l} o
i=H i=H,
iy iy kl
i=Hp,
The characteristic polynomial 1s equal to:
_ A Hp
SA+BRzZ = {C+ 'y kiLl +
STk iSHn
el
Hp (38)

I Hp _ Hp .
. {B Sk A kIGiz‘-i
Z gL o i=H, K,

1=Hy,, 1

i=Hy,

il
=5

m

The second term in the first row and the last term in
the second row are the same but shown with different
signs. Thus, the characteristic polynomial:

SA+BRz7! =

2k

1=H

m

(39)

B%P: kz™ - A i kG,z™ |=CP

i=H, i=H,,

Recall the Eq. 38 with the elimmation of the C
polynomial:

Bz
w(t)+
b (t)

[

yit) = (40)

S
Eﬁ(t)

From this expression, one umportant role of the C
polynomial can be clearly seen. The closed loop transfer
function between the output and the reference signal
(describing the tracking behavior) does not melude the C
polynomial, thus the stability and the tracking
performance is not influenced by the C polynomial. The
transfer function between output and the disturbance

19

includes the C polynomial in the S thus, the disturbance
regulation depends on the C polynomial. During the
derivation of these conclusions, perfect model matching
was assumed. If it 1s not satisfied (the model applied in the
controller and the process are not identical) then the
shown eliminations can not be performed and the tracking
behavior of the GPC will also be mfluenced by the noise
model. In the Eq. 39 and 40, it seems that the roots of the
Pc expression give the poles of the closed control loop
that must be examined to check the stability of the control
loop.

RESULTS AND DISCUSSION

Tuning of the GPC algorithms: The main tuning
parameters (as horizons and weighting factors) were
already mentioned by the cost function earlier. Now some
basic guidelines are given and some simulation (identified
heat exchanger model) examples are shown to illustrate
the effect of the main parameters.

The minimum horizon is of little amount parameter.
Since, the control action affects the process output only
after the delay, it 1s reasonable to choose the mimmum
horizon higher or equal to the process delay. If the
process delay is not known then, the delay can be set to
one and the minimum horizon to zero without the loss of
stability. The choice of the mimimum horizon can be
interesting in case of nonmimimum phase processes.

The prediction horizon has a remarkable effect on the
performance of the controller. ITn general, the prediction
horizon 1s propoesed to set around the settling time of the
process but at least equal to the order of the process. If
the plant has a nonminimum-phase response (unstable
zero 1n the process transfer function), the prediction
horizon has to be long enough that the cost function
could include the samples near to the settling time. The
control horizon is an essential design parameter. The
increasing control horizon parameter results in a more
excited control signal and thus a faster response. Over a
certain value no further increase can be obtamned. The
control weighting parameters has the effect of reducing
the control activity.

In the case of a stable plant, increasing the weights
reduces the effect of the feedback thus, stabilizing the
control loop. The drawback of increasing the control
weights 1s to slow down the control loop since, small
control actions are resulted. This parameter has special
importance 1f the process output measurement 1is
burdened with serious measurement noise. The cost
function includes the vector of the future reference signal.
As a consequence, it is possible to prescribe certain
tracking behavior. Some parameter settings of the GPC
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have special importance. Set the control horizon equal to
one, the control signal weighting factor equal to zero and
suppose a unit step in the reference signal without any
disturbance on the process. If the prediction horizon is
long enough, the control signal is close to a step and the
control performance is similar to the mean-level control. Tf
the process requires even more dampimng of the control
action, the control signal’s weighting can be mncreased. In
most of the stable plant cases, the mean-level control 1s
suitable.

The deadbeat response can also be implemented in
GPC. By setting the control and the prediction horizon to
be higher than the order of the process and the control
welghting factor equal to zero, the realized controller
results m deadbeat control. In this case, the process
output reaches the reference signal within the possible
minimum instants.

Example 1: The effects of the tumng parameters on HE
model, the HE model identified for set of inputs and
outputs when step input applied across control valve
over 1000 samples the data i1s recorded and model is
1dentified using regression analysis. To show the effect of
the main tuning parameters, a series of simulations are
presented. The process to be controlled is the following
transfer function:

0978977

= (41)
473625+ 1

Gis)

Thus, the time constant of the process is T, 4.7 sec;
the damping factor is 0.65 and the resulting settling time
(2%) 18 T.uig = 30 sec. Hence in the future if it is not
indicated otherwise, the sampling time is 1 sec and the
welghting factor of the predicted errors i1s one. The
minimum horizon is set to be equal to the process delay
and the control signal weighting is zero.

In the first simulation the control horizon is equal to
one; the prediction horizon 1s changed to demonstrate the
it’s effect. The different tracking performances and the
corresponding control signals are shown in Fig. 4 and 5,
respectively. Figure 4 and 5 clearly show the effect of the
prediction horizon.

The shorter the horizon, the faster the response and
the control signal is more excited. As it is expected, the
long prediction horizon results in performance that is
close to the mean level control.

The control signal is almost a step and the tracking
behavior tends to the step response with unit gain as the
prediction horizon increases. In the next simulation, the
control horizon was changing meanwhile the prediction
horizon was fixed to 23 steps. The results are shown in
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Fig. 5: The effect of the prediction hoizon

Fig. 6 and 7. It shows the effect of the control horizon
well: the settling time of the control loop decreased
remarkably by increasing the control horizon. From the
close to mean level control (He = 1) with the mereasing
control horizon value the dead-beat response (He = 3)
1s reached. BEvidently, the >3 control horizon value can
not result in any further acceleration in the control
loop.

The corresponding control signals reflect the great
influence of the parameter. The higher control horizon
value results in a more excited control signal. In Fig. 7, the
control signal axis 13 truncated, the peaks of the control
signals are approximately 1, 14 and 54, respectively.

In the next set of simulations the prediction horizon
15 equal to 23 steps and the control horizon 1s equal to 2
with the control weighting factor being changed from
0-100 (The control weighting factors are assumed to be
constant along the time in the prediction). The simulation
results are shown in Fig. 8 and 9. For better orientation
about the weighting factor values, the elements of the G”
G matrix are within the range 12-15 in Eq. 21. The Fig. 8
shows how the increasing weighting factor slows down
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Fig. 8: The effect of the control weighting factor

the control loops by the smoother control signal. As a
consequence of the smaller control increments, the
overshoot also increased by the increased control
welghtings.

The cascade GPC algorithm: The basic idea of the

cascade control structure was discussed 1 the
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Fig. 9: The effect of the control weighting factor
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Fig. 10: Cascade generalized predictive controller

introduction. A special cascade structure is introduced. In
spite of the traditional, two controllers of the cascade
structure only one controller 13 proposed as shown in
Fig. 10. This realizes the same performance as m the
traditional cascade structure. The control algorithm is
based on the GPC algorithm but the original predictor is
replaced by the special cascade predictor. Also, the cost
function 1s unchanged. The predictor covers the whole
process. Tt predicts the process output based on the
measured process outputs y(t) on the measured
intermediate variable v(t) and the past control signals
Au(t-1). The applied process models are ARIMAX
models. The model of the inner process:

_ Bl(Zil) _ Cl(Zil) 42
v(t) Al(zfl)u(t 1)+D1(Zfl)§(t) (42)
Where;
Dz =A(Z")¥1-27")
_ B,(z™) _ C,(z™h 43
y(t) AZ(Z%)v(t 1)+D2(Zfl)&2(t) (43)
Where;

D,(z)=A,(z' X1~z )

The lk-step ahead predictor is derived throughout
similar steps as m the case of the original GPC algorithm.
The k-step ahead prediction of the process output:
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Flt+k/t)= iz (Zi;v(t Tk

7 (44)

CZ(Z_I)
Dz(z_l)ﬁz(Hk)

The 1st diophantine equation:

Cz(zil)

GzK(Zil) -k
D,(z™)

z (45)
D,z

=F, "+

After substituting the equation:

B,(£)D,()E, (")

Az(zil)
G,z

AL (z )T,z )

")

Dz(z’l)

Jit+kit)=
vit+k-1)+ (46)

B,(z")
Az(z’l)

E(Z8,(t+ k)

v(t-1+ &, (t)

Rearranging the equation and considering that the
expected value of the last term is equal to zero:

BZ(Z:)v(H k1)

2 (47)

GZK(Z’l)
7(32(2,1) y(t)

Fit+kit)=

Where:

B,(z D, (z YF,(z")
Ay (Zil)

vit+k-1)=B,(ZF,(z"1-2")

B, (z"=

(48)

The 2nd diophantine equation:

B (Zil)
C,(z™h

G;K(Zil)

(49)
C,(z™h

= Fpe(z7)+ z7k

Substituting to the prediction equation:

S+ ki) =F (z w(t+k—1)+

G'ZK(Z'I)V G,z
C,zh Cizh

(50)

t+ y(t)
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Replacing v with the model of the inner process:

Ft+k/)=F (z")
Bl(zil)
Az

u(t+k72)+@§(t+k71) +

D,(z™") (51)

G;K(Z_gl)v(t)+ GzK(Z_ll)
Cylz) Cyiz )

y(t)

The 3rd diophantine equation:

Fy(z)C () _

Gm(z_l) S
D,z

(52)
D, (z™")

Flk(z’l)+

After substituting the equation:

Bz Dz (7))

= - ut+k-2)+
AzCz )
srkin=| S Z) R e ek -
C.h
GzK(Zil) sz{(zil)
v e v

After additional rearrangements and considering zero
mean value for the future disturbance:

j/(t+k/t):%u(t+k72)+
1(2 ) (53)
GIK(Z’I) G'ZK(Z’I) GZK(Z’l)
{ C@) | ) }’(m e "
$(t+ k/t) = B;(Z:i)u(t+k72)+
Ciz) (54)
GIK(Z’l) G'ZK(Z’l) GZK(Z’l)
{ cEh G }’(t)* iz

Where,
B,(z)=B,(z ), (z")

The 4th diophantine equation:

Bl (z )C(z )

-1
- — Flrk(z—l)Jr GlK (Z )Z—k+1
Cz)

¢,z

Substituting it to get the final expression of the k step
prediction:
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§it+k/t)= E, (z)Aut + k- 2)+
1K(Z_1)
Glelz ) SR
WAu(tfl)“r ’ZK( . V(t)+ (55)
C1(Zil)
21{(2 )
C. ) — oyt

The final expression of the cascade predictor contains
one extra term of the v(k) compared to the predictor of the
original GPC controller.

The control algorithm: Based on the derived cascade
predictor, the control algorithm is given in a similar way
than 1n the case of the original GPC. The only difference
is that the formula of the free response that is extended
with the terms including the effect of the intermediate
variable:

G, (2™ - G, (27 o
N - (L — v
e la@ | een”
Gy (27) G (27) (56)
G,y H G,y 2ZhH
vy | ¥
Cy(z™) C, (27
Gu &) L @ |

The cost function 13 exactly the same as i the case of
the original GPC algorithm (Eq. 6) thus, the analytical
solution leads to:

Au=-H'o=—(FTF+ [ (F,. -w) 7
Where;
£, 0 0
pofe b0 (58)
fHP fHP_l fHP_HC +1
And:
F () =f 4z )+ .+ £(2%)

The applied control signal according to the receding
horizon concept is:

Au=Kw-¥,) (59)
where, K is again the first row of the matrix:
(G, G+T,)'G" (60)
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Assuming that the future reference trajectory keeps
constant along the prediction horizon, the control
algorithm 18 given by:

Au(t) = w(t)z Kwit)— Z g Aut=h
S : < (61)

Hp

2 2

or equivalently:

Au(t) [Cl vzt % le’h} C, % kow(t)— % kG,vit)—

i=Hp, i=H,

Hp C Hp C
2 kG —Ev(t = X k Gy —y(D)
i=H, G, i=H, G,
(62)
From this Eq. 62, the R-3-T kind polynomials can be
seen:

Hp Hp
Ci+z' > kG > kG,
Sz )= —— Rz ) =R,z )
2k Sk,
i=H, i=Hy
Hp Hp
S kG, Z kG,
_ 1=H;P R (Z—l)_ :
2k Sk,
1=Hy =H
(63)

The structure of the control loop 1s given in Fig. 11. In
the derivation of the predictor both the inner and the
outer sub-processes are modeled with ARTMAX models.
As a consequence an error free disturbance regulation 1s
expected from the controller.

In Fig. 11, the integrator can be well observed in the
inner loop. To obtain error free regulation, an integrator
should appear in the outer loop as well. Therefore, the
closed loop transfer function of the inner loop (without
the outer feedback) should contain an integrator. The
closed loop transfer function of the inner loop can be
expressed as follow:

B(z")C,
A S
Yiew = B (7" c1 R, R
1+@—‘ —L+ |+ (64)
A, s|C G,
z'B,C,

CAC,S+2'B(C,R, +CR,
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f(t) le’(t)

Clz YAz ) Cz YA
wit) uit) ¥t
CEVSEY P qBE VAL q Bz VA >
< Rz VC(Z™)
REVCED g
Fig. 11: The control structure of the cascade generalized predictive controller
Recalling that A, =aa; the first term of the Hp , Hp .
denominator includes the 1-z7' term. From the 3rd Z kG _ Z kEq
C i=H,, _C.A i=H (68)

Diophantine Eq. 64:

Hp Hp _ Hp
> kG, =C > kFz'-A>kEz"' (65
1=Hy 1=Hy 1=Hy

From the 2nd Diophantine equation. Combining these
expressions we get:

Hp Hp Hp
C, > kFEZ ' =AB, > kF,2 - 3 kG, (66)
i=Hy, i=Hp i=Hp,
The 2nd term is equal to the C; R; expression:
HP HP
Z k1FZer1 Z lehZPI
1=H « 1=H
C,R, +CR, = CAB, == —C,A, e
2k >k
i=H, i=Hy
Hp . Hp .
Z kiniZI_l Z kE.z' '
i=Hy i=
=A| CB, =g —CA g
k 2k
1=H, 1=H,
(67)

He
AB, S kF,7"

i=Huy

Hp
2k
IS,

Hp
Z kiGh

i=Huy
R =C,—

>k
iH,

=C

1
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1 |

Hp mHP
2k 2k
1=H, 1=H,
This expression means that the closed loop transfer
function of the mner loop contans an mntegrative effect,

and thus, facilitates the error free regulation of the
disturbances arising in the outer loop as well.

Example 2: Comparison of a simple GPC and the CGPC
for HE model: This example illustrates the advantage of
the cascade structure: a process is controlled by an
original GPC and by a cascade GPC (Fig. 12). The CGPCis
going to be compared to cascade loop containing two
GPCs. The inner and outer process model identified for HE
process are. The immer process is:

0.9789e "
G (s)= ot (69)
473625+ 1
The outer process 1s:
—2.533s
Gis) = 0.9818e (70)

6.1941s +1

These processes are going to be applied m the
following to test and compare the cascade structures. The
ratio of the average residence times (corresponding to the
2% error) 1s about six therefore, it can be considered as a
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Fig. 12: The tracking and regulation behavior of the CGPC and the original GPC
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Fig. 13: The structure of the cascade control loop mcluding 2 GPCs

typical process where cascade control is relevant. The
parameters of the controllers are: I, = 40; H = 2; the
control weighting factor 18 0. In the CGPC, the C,
polynomial is equal to the denominator of the inner
process; the C, is equal to the denominator of the outer
process. The C polynomial of the GPC algorithm was
equal to the convolution of the C, and C, polynomials. In
the simulation, there was an inner (e,) and an outer
disturbance (e,) at 200 and 600 sec, respectively both are
step kind with amplitude 0.5. The outer process outputs
(primary outputs) of the control loops are shown in
Fig. 13. Tt clearly shows the difference and the similarities
of the control loops. The tracking behaviors and the outer
output disturbance (e,) regulations are identical in both
cases since, the controller parameters are identical. This

25

implies that all the good properties of the GPC are kept in
the CGPC. The mam difference i1s in the intermediate
disturbance regulation. The CGPC acts much earlier to
regulate this disturbance because its prediction is based
on the intermediate variable as well. This behavior is
specific to the cascade structures. Both controllers could
regulate the disturbances without error. Thus, the CGPC
controller is also able to regulate perfectly. This result was
expected based on the derivation since, ARTMAX models
were applied for both the inner and the outer processes.
It 1s wnportant to distinguish the CGPC controller and the
GPC controller extended with feedforward action. In the
CGPC control loop, the disturbance is not measured only
its effect on the intermediate variable. Meanwlile in the
disturbance feedforward compensation, the disturbance
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signal is measured. As a consequence in the CGPC, all the
disturbances affecting the inner variable are regulated not
only the measured disturbance as it 1s in the feedforward
compensation.

CONCLUSION

This study simulates the effect of cascaded GPC and
GPC control algorithms on a model of heat exchanger
process m terms of servo and regulatory performance with
mner loop disturbance (d,) and outer loop disturbance
(d,). After their implementation in the HE process their
step response was simulated using the Matlab/Simulink™
software and compared with the conventional GPC
controller, tuned by various practical scenarios. Such
scenarios include the implementation of input constraints
or disturbances. According to the simulations results,
cascaded GPC control algorithms perform satisfactory
step behavior with good set point tracking and smooth
steady state approach. They also sustamn their robustness
and performance during the mtroduction of input
constraints or measured disturbances. Surprisingly, the
step response of the conventional GPC controller wasn’t
as optimal as 1t has been expected as its overshoot
exceeds any typical specification limits.
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