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Abstract: Using Block-Pulse Functions (BPFs) and Shifted Legendre Polynomials (SLPs) 2 recursive algorithms
are presented for the analysis of linear time-invariant optimal control systems using reduced order observers.
An illustrative example is included to demonstrate the superiority of proposed recursive algorithms over the

existing recursive/nonrecursive approaches.
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INTRODUCTION

State feedback control system design requires the
knowledge of the state vector of the controlled plant.
Sometimes, no state variables or only a few state variables
are available for measurement. In such cases an observer
(Luenberger, 1964) is incorporated to estimate the
unknown plant state variables if the plant is observable.
This problem is stated as follows:

Consider a linear time-invariant completely
observable and completely controllable system described
by:

X(t)=Ax(t)+ Bu(t) M

y(H)=Cx(t) 2

Where u(t), x(t) and y(t) are the plant input, state and
output vectors, respectively and A, B and C are nxn;

nxr and pxn real, constant matrices, respectively.
Assume that rank of C 1s p. An observer described by:

2()=Fz(t)+ Gu(t)+Hy(t) 3

(=L, y(t)+ L,z(t) 4)

can provide the estimate X (t) for the state x(t) where F, G,
H, L, and L, are real constant q*g, g1, qxp, nxp and nxq

matrices, respectively and q = n - p when the following
conditions are satisfied (Bongiomo and Youla, 1968):

G=TIB (5

Where, I' 1s the g*n matrix which 1s the solution of
the matrix equation:

TA-FT = HC (6)
2(t) = Tx(t) + e(t) (7)
&(t) = Fe(t) (8)
LC+LI=T1, (9

When an observer is incorporated to generate an
estimate X (t) of the plant state vector we need to choose
the matrix K n the feedback law:

U(t):— K;((t) (1 0)
so that the cost function:
1 peor o n
1= [ [XT®Qxtt+u’hRu(n) Jdt 1)

is a minimum. The nxn matrix Q and the rxr matrix R are
real symmetric positive semidefinite and real symmetric
positive defimite, respectively. Substituting Eq. 2, 4, 7 and
9 mto Eq. 10, we obtain:

u* (O = -K [x(t) + L,e(t)] (12)

Tnserting Eq. 12 into Eq. 1 yields:
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(D)= Ax(0)+ Be(t) (13)
Where:
A=A-BK (14)
and
B=—BKL, (15)

It follows from Eq. 12 that the solutions of Eq. 8 and
13 are necessary to compute the control law u* (t). In the
last three and half decades, orthogonal functions
approach (Rao, 1983; liang and Schaufelberger, 1992,
Datta and Mohan, 1995) was successfully applied to
study varieties of problems in systems and control. It
became quite popular numerically and computationally as
1t converts caleulus (differential or integral) into algebra in
the sense of least squares i.e., dynamical equations of a
system can be converted into a set of algebraic equations
whose solution simply leads to the solution of dynamical
equations.

The problem of optimal control incorporating reduced
order observers has been successfully studied wvia
different classes of orthogonal functions, namely block-
pulse functions (Kawaji, 1983) shifted legendre
polynomials (Chou and Homg, 1985b) and (Yang and
Chen, 1988) shifted Jacobi polynomials (Lee et al., 1986),
general orthogonal polynomials (Chang and Lee, 1986),
Fourter series (Chung and Sun, 1987; Yang and Chen,
1988), associated legendre polynomials (Yang and Chen,
1988), Chebyshev polynomials of first kind and single-
term walsh series (Palamisamy and Raghunathan, 1989).
The approach followed is non resursive while it is
recursive (Kawaji, 1983; Palamsamy and Raglhunathan,
198%) making the approach by Chou and Horng (1985a, b),
Lee et al. (1986), Chang and Lee (1986), Chung and Sun
(1987) and Yang and Chen (1988) computationally not
attractive. Application of orthogonal functions has been
extended to 2 more closely related problems in this
decade. That 1s costate estimation (Fahroo and Ross,
2001) and fault detection using state observers (De Melo
and Morais, 2007) have been studied via orthogonal
functions. The basic idea of this continued research
activity 1s to develop computationally efficient algorithms.
In this study, using BPFs and SLPs 2 recursive algorithms
are developed for solving the problem of linear optimal
control systems mcorporating reduced order observers.

Orthogonal functions and their properties: IHere, we
consider 2 classes of orthogonal functions, namely BPFs
and SLPs and discuss their properties.

Block-pulse functions: A set of m block-pulse functions
(Fahroo and Ross, 2001; Iiang and Schaufelberger, 1992)
orthogonal over t € [t;, t] 1s defined as:

0, ()={Lt, +iT < t<t, + (i +1)TO, otherwise} (16)

for1=0,1,2 .. m-1 and

T :@, the block — pulses width (17)
m

A square mtegrable function f (t) on ty<t<t; can be
approximately represented in terms of BPF as:

e S o (=7 ot (18)

Where:

f=1[f, f, .., L.]" (19)

1s a m-dimensional block-pulse spectrum of f (t) and

T
00| 0, (0.0, (V)] @0
a m-dimensional BPF vector. f in Eq. 18 1s given by:

_ 1 pto+(i+ T 21
fi 7?-‘104-1'1' f(t)dt ( )

which 15 the average value of £ (t) over t, +1T <t<t+(1+1)T.
Integrating ¢(t) once with respect to t and expressing the
result in m-set of BPF, we have:

j: (1) dTPY(t) (22)
Where:
L1 1
0 L1 1
P=T|0 0 L - 1 (23)
000 L

is called the integration operational matrix of BPF and it is
a mxm upper tnangular matnx. Matrix P will be helpful in
deriving a recursive algorithm.

Shifted legendre polynomials: A set of SLP (Datta and
Mohan, 1995), denoted by {d,(t)} fori=0,1,2,. .., m-1
is orthogonal with respect to the weighting function
w(t) =1 over the mterval [t,, t]. These polynomials satisfy
the recurrence relation:

(21+1)
i+
for1=1,2,3,......

., (= oo, (1) o, (1) (24)

i
(i+1)



Int. J. Signal Syst. Control Eng. Appl., 3 (1): 1-6, 2010

_A;t-t) (25)
(tf - tn)
(1) =1 and () = ¢ (26)

A function f (t) that 15 square mtegrable on t € [t;, t;]
can be represented i terms of SLP as shown in Eq. 18.
Here, f is called legendre spectrum of f (t) and &(t) 1s
called SLP vector. f in Eq. 18 1s given by:

f= (2”1) j Pety, (£t (27)

SLP satisfy the relation:

g =) d %Mt)j (28)

- th—
2(Zi+1)(dt () d
fori=1,2,3,......

Integrating ¢,(t) once with respect to t and
expressing the result in terms of SLP, we have:

(ts

Jo dotoae= = g, 0+ o 00) (29)

Integrating Eq. 28 once with respect to t, we obtain:

_ G- ty)
T2+

[ a.(0dr [o.(D-b (0] (GO

Equation 29 and 30 can be written in the form of
Eq. 22 where,

1 1 0 0
<o Lo 0 0
p_ et 0 T 03 0 (31)
2 z z E : E
000 A
|0 0 0 = 0 |

which is called the integration operational matrix of SLP.
As can be seen from Eq. 31, it is a tridiagonal matrix of
order m>xm and it plays an important role in deriving a
recursive algorithm.

Analysis of linear optimal control systems incorporating
observers: We express the state vector *(® and the error
vector e(t) in terms of orthogonal functions as:

x(t)w§x1¢l<t>: Xo(t) (32)
and

e(t)znielcbl(t):Ed)(t) (33)
Where

H=[Xpn X -y X4l (34)
and

E=le.e,....e.] (35)

Which are not yet known and ¢(t) is either BPF vector
B(t) or SLP vector L(t). Integrating Eq. 8 once with respect
to tand using Eq. 22 and 33 yield:

E=E,+FEP (36)
Where:

B, =[e(b), elty), . ... e()]if GO =B (37)

=[e(t,).0,...,0] if d(t) =Lt (38)
Similarly, from Eq. 13, 22 and 32 we obtam:
X=X, +(AX+BE)P (39)

Where:

X = [x(t), x(tp), . .., (] GO =BO (40

= [x(t), 0,...,01 i dO=L{E)  (41)

Algebraic Eq. 36 and 39 are to be solved for the
unknowns E and X. Once E and X are available, the
desired control law u* (t) can be computed from Eq. 12 as:

u* (t) = -K [X +L,E] d(t) (42)

Kronecker product method: Equation 36 and 39 can be

written as:
VeoE)=(1,, — P* ®F)  Veo(E,) (43)
and:
Veo(X)=(1,, - P' ®A) Vee(V) (44)
Where:
V=X, +BEP=[¥,.¥...%,] (45)

Vec() is a vector valued function (Brewer, 1978) of a
matrix, say A(p>m) and it is defined by:
A-l

Vec(A)= A,'z (46)

5]
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A pm vector, I, is the identity matrix of order nm >nm
and AXB is the Kronecker product {Brewer, 1978) of 2
matrices A(pxm) and B(gxn) defined by:

a,B a,B a, B
a,B a,B - a, B

A@B=| T - 47
aplB asz ame

which is a pgxmn matrix. Though this method is
straightforward, it is not attractive computationally as it
involves inversion of a matrix of size gm or nm as Eq. 43
and 44 which becomes large as the value of m increases.
The accuracy of end result depends on m value.

Recursive algorithm via BPFs: &(t) and * were also
expressed in terms of BPFs (Kawaji, 1983) to arrive at a
recursive algorithm. Since, Eq. 36 and 39 were obtained
only after mntegrating Eq. 8 and 13, there is no need to
express &(t) and *® in terms of BPF to derive the
recursive algorithm in the approach. Thus, the approach
here is different from the one (Kawaji, 1983). Substituting
matrix P of BPF into Eq. 36 and 39 and simplifying, we
obtain:

g, = (I,- 0.5TF)e(t,) (48)

e, = (I-0.5TF) " (I, + 0.5TF)e,, (49)

fori=1,23,...,m-1,

x,=(1, - O.STA)_I [x(t,)+ 05TBe, | (50)

X, :(In - O.STA)*1 [(In +0.5TA)x, , +0.5TB(e,_, + ei)} (51)

fori=1,2,3, ...,m-1.

Recursive algorithm via SLPs: Substituting matrix P of
SLP mto Eq. 36 and rearranging the terms, we have:

Wy Wy O O O 5 v,
W, W, W, O o S Vi
O Wy, W, Wy o B2 Y
o O O O - W8 Voo
: -2
L o O O o i Wm—1,m—1 J8poy | LVm-

21,

-F ifi=j=0
(tf*tn)
- ifi=0,1,2,..,m—2andj=i+1
{21+ 3)
-F . o
W, =12 ifi=1,2,3,...,m—1land j=i -1
oz
2L, ifi=j=L2,..,m-1
(tf*tn)
@] otherwise
(53)
ﬂifizo
v =1t —t,) (54)
0  otherwise
and

s, = e foralli (55)

Similarly, substituting matrix P of SLP into Eq. 39 and
rearranging the terms lead to Eq. 52 where:

21 ~
L —A ifi=j=0
(tf_tn)
_A ifi=0,1,2,....,m—Zandj=i+1
(2i+3)
-A . .
W=1— ifi=1,2,3,..,m—-1and j=i-1
(Zi—-1)
21, ifi=j=1,2,..., m-1
(tfftu)
O otherwise
(56)
ﬁﬂ%(enf%el) if i=0
(tfftu)
. e e
V=BT 5™ if i=12,.,m-2 7
1-1 1+3
~e e
Bzm_3 if i=m-1
and
s, =x foralli (58)

Now, Eq. 52 with Eq. 53-55 or Eq. 56-58 can be solved
recursively using the following recursive relations:

1

_ M. v, ifi=m-1 (59)
My (v, - W, d,)ifi=m-2,m-3,..1,0

=— M, W, fori=m-1m-2,..,2,1 (60)

i,i-1 i Y-l
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" W ifi=m-1
- + “ifi=m-2,m-3,....1,
W+ W R, TS 2,m-3,.,1,0

11+1

(61)

80~ dy (62)

s, = Rys+d fori=1,2...,m-1 (63)

In Eq. 61, the size of the matrix to be mverted 13 kept
to q or n instead of gm or nm as in the case of Kronecker
product method. Moreover, the matrix in Eq. 52 is sparse
which 1s fully exploited in deriving the recursive
relations 59-63. This method 15 thus more attractive
computationally.

Tllustrative example: Consider the linear system (Kawaji,
1983; Chou and Homg, 1985a, b; Lee et al., 1986, Chang

and Lee, 1986; Chung and Sun, 1987; Yang and Chen,
1988; Palamsamy and Raghunathan, 1989).

%) {0 1}?@)} {0} {XI(O)MM}
- +
N ERIIEACIN S x,(0) ]| 0.35
yh=[1 o][x.® x,mf
Where, the optimal control law is taken to be:
u*(=- Kk(H=[15 1% %0
%(t)

due to incomplete measurement of the state and is

obtained by the Luenberger observer:
Z(1)=—1.5z(t) —u(t)— 1.25y(t), z(0)=0.5

GRS
ol R
2)=[-1.5 1[x,() x,(t)] +elt)

which is designed as per the design procedure by Chang
and Lee (1986) as follows: If we choose:

L=1 15]"andL,=[0 1]’

We can obtain I' from BEq. 9 as'=[y, v.]=[-1.3
1]. Once I 1s obtained, G can be computed from Eq. 5 as

G =-1 and F and H can be computed from Eq. 6 asF=-1.5
and H = -1.25. Therefore, we have:

A—ﬁ H,B{Oj,c—[l 0].K=[-1.5 -1],F=-15

1 0
G=—1H=-125.L,=| _|.L,= .['=[-15 1]
15 1

- 0 1|~ 0
A=A-BK= ,B=—BKL,=
-05 -1 -1

We consider m = 4 on each unit mterval and compute
e(t), x(t) and u* (t) over t’¢ (0, 5) using both the recursive
algorithms. Figure 1 shows exact:

e(t) =-0.75¢™*

and e(t) obtamed via SLPs and BPFs. Figure 2 shows x,(t)
and x,(t) obtained via SLPs and BPFs while Fig. 3 shows
exact:

u* (1) =-0.75 e + e " [1.9 5in(0.5t) -0.55 cos(0.50)]

and u* (t) obtained via SLPs and BPFs. It can be observed
from Fig. 1-3 that BPF approach always produces
plecewise constant solution and SLP approach produces
contimious solution. The results obtamed by the
proposed algorithms are in close agreement with the exact
results. Moreover, the results obtained via the non
recursive SLP approach by Chou and Horng (1985b) and
the recursive BPF approach by Kawaji (1983) are also
included for comparison sake. As can be seen, both the
existing approaches (Kawaji, 1983; Chou and Horng,
1985b) and the proposed approaches have produced
the same result. The proposed SLPs approach 1s faster

0.6- —_BFP
— SLP
0.4
0.24
F oo
* 024

0.4

-0.64

0.8 T T T T

Fig. 1: Error
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Time
Fig. 2: State variables

0.6+
0.44
0.2

k()
&
iy

0.6
-0.8

Fig. 3: Optimal control law

and less complex than the existing SLP approach as it is
purely recursive in nature.

CONCLUSION

Based on BPFs and SLPs, two recursive algorithms
are presented for analysis of linear optimal control
systems incorporating observers. Computational su-
periority of these algorithms over the existing algorithms
has been discussed. For a fixed value of m, the number of
SLPs or BPFs, BPF algorithm is faster than SLP algorithm
but its end result is piecewise constant; not smooth as n
the case of SLP algorithm. So, one has a choice to choose
a method (BPF or SLP) based on the requirement, i.e,.
speed of computation or accuracy of end result.
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