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Abstract: This study proposes an effective adaptation learming algorithm based on artificial neural networks
for speed control of an mduction motor assumed to operate in a high-performance drives environment. The
structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order
that the motor speed can accurately track of the reference command. This study alse makes uses a very realistic
and practical scheme to estimate and adaptively leamn the noise content in the speed load torque characteristic
of the motor. The availability of the proposed controller 1s verified by through a laboratory implementation and
under computation simulations with Matlab-software. The process is also tested for the tracking property using
different types of reference signals. The performance and robustness of the proposed control scheme have
evaluated under a wvariety of operating conditions of the induction motor drives. The obtained results
demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error
in speed and dynamic conditions, was found to be excellent and those is not overshoot.
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INTRODUCTION

AC induction motors are very popular in variable
speed drives. They are simple rugged, inexpensive and
available at all power ratings. Progress in the field of
power electronics and microelectronics enables the
application of induction motors for high performance
drives, where traditionally only DC motors were applied
(Liaw et al., 1991). Thanks to sophisticated control
methods, AC induction drives, where sophistically control
methods, AC induction drives offer the same control
capabilities as high performance four quadrant DC drives.
The mduction motors it 1s desirable to control the flux and
torque separately in order to have the same performances
as those of DC motors. One way of doing this is by using
the field oriented control (Zhang et al., 1988). This
method assures the decoupling of flux and torque. The
vector-controlled mduction motors with a conventional PI
speed controller. One of the most noticeable control
theories is the method wusing the Adaptive Neural
Network (Tien-Chi and Tsong-Terng, 2002, Oh et al,
2006). Adaptive Neural Network can approximate linear or
non linear functions is used extensively in industry
(Pillay and Krishnam, 1988), because the conventional PT
controller 18 easily mplemented. Many theories for the
non lmear system control have been proposed to solve

the problems of the conventional control method through
learming. Compared with existing control method, it does
not require complex mathematical calculation or models
needed for obtaining system parameters and it can
success fully control non linear system.

MATERIALS AND METHODS

Figure 1 shows the real, stationary and synch-
ronously rotating axes of a 3 phase symmetrical induction
motor. It has been used to describe the induction
motor mathematical model, based on the vector method
(Chen and Sheu, 1999). Where, s, r denote stator and rotor
a-c are the phase system axis, d and q denote direct and
quadratic components of the vectors with respect to the
fixed stator reference d, g. Thus, the slip angle 6, can be
calculated as the time mtegral of the slip angle velocity w,,
by adding the rotor angle 8, to the slip angle the rotor flux
position 8, many be calculated Eq. 1:

0,=0,+0, (1)

The mathematical model of induction motor applied
1n the study has been obtained after the transformation
of the stator and the rotor phase equations into 2,
rotating with synchronous velocity w, orthogonal axes
(Eq. 2 and 3).
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where:
iL,u = Denote current, voltage and flux

linkage, respectively

Subscriptsr, s = Rotor and stator

W, = The rotor speed

L.R = The auto-inductances and resistances

M = The mutual inductance constant
coefficient

The motor load system can be described by a
fundamental torque Eq. 4:

T:T1+JClQm 4)

dt

an ) )
+ me = L—(wrdlsq - qulsd)

r

Fig. 1: Space vector with a-c and d, q axis

16

where:

T = The instantaneous value of the developed motor
torque

T, = The mstantaneous value of the load torques

2. = Rotor speed of the motor shaft

I = The moment of inertia of the motor load system

f = The coefficient of frotement

n, = The number of pair poles

INDIRECT VECTOR CONTROL
OF INDUCTION MOTOR

Based onreference frame theory, the induction motor
drive can be controlled like a separately exited de machine
by field oriented control method (Liaw ef al., 1991), which
can be design m two basic ways by direct or indirect
method. The choice between these two methods 1s not
obvious because each method has its distinctive
advantages and disadvantages. As a result, a great
research effort has been made to improve both direct and
indirect field oriented controllers by design of complicated
hardware and software to compensate non-ideal machine
behaviour parameter
temperature changes, rotor deep bar effects and magnetic
saturation. The bloc diagram shown in Fig. 2, depicts the
general structure of the indirect field oriented control with
speed control motor drive, has been chosen for control of
induction motor drive.

This scheme includes mduction motor, Pulse With
Modulated (PWM) inverter, Indirect Field Oriented
Control (IFOC) and speed controller. In this approach the
flux angle 6, is not measured directly, but is estimated
from the equivalent circuit model and from measurements
of the rotor speed, stator currents and voltages u,, u,,.

such as variations due to

3 phase —
220 V —{ Converter
50 Hz —
@,
y Speed —H
mirolls
(‘) 0! er —h; u, ” i". E
o, | U, 2
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[l Bl 2
abc ]
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Fig. 2: Indirect field oriented mduction motor drive
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PI SPEED CONTROLLER

The dynamic model of speed induction motor drive 1s
significantly simplified and can be reasonably represented
by the bloc diagram shown in Fig. 3.

By wing the Laplace transformation, the transfer
function for Eq. 4 1s 5:

T-T
©n (5) :np§s+f i ®

The PI controller (Proportional and Integral) 1s used
during the start up transition to increase the speed of the
transient response. It also is well suited to regulating the
torque, to the desired values as it is able to reach constant
reference, by carrectly both the P term (K,) and I term (K))
winches are, respectively responsible for emror e
sensibility and for the steady state error. If T, = 0, the
transfer function is as following Eq. 6 and 7:

np(Kps+ Kl)
Is’ +(f+ Kpnp)er Kn

Gs) = (6)
Where:
P(s) =5+ s T ™)

The expressions for K, and K; of the regulator is
calculated by imposition of poles complexes combined
with real part negative Eq. 8:

S, =p(-1%])
K _2Zpp—f
! n
! (8)
21p?
K, ==
n

b

where, p 1s a positive constant.

The proposed mdirect vector control has several
advantages over conventional one as are its
independence of the motor model parameters and simple
microcomputer implementation. The effects of stator
resistance R, varations m the calculation of slip frequency
Ti
K+K, T - 0 o,
- [ Js+f

Fig. 3: Bloc diagram of speed system controller

and transformation angle is compensated by motion
controller. The nonlinearities caused by magnetic
saturation can be compensated by the inverse
magnetizing characteristic.

CONTROL SYSTEM BASED ARTIFICIAL
NEURAL NETWORK

A general architecture graph of Multilayer Perceptron
(MLP) is shown in Fig. 4. This network, which can be
multiplexed for each output of the controller has been
found to possess acceptable performance mn many
industrial applications. The feed-forward topology shown
in the network of Fig. 4, offers the advantage of simplicity
and ease programming. Such a neural network contains
three layer, hidden layers and output layer. Each layer 1s
composed of several neurons. The number of the neurons
in the output and layers depends on the number of the
selected input and output variables. The number of
hidden layers and the number of newrons m each depend
on the system dynamic and the desired degree of
accuracy.

The block-diagram of Fig. 5 shows the model of a
neuron, which performs two functions. The first 1s to sum

Fig. 4: Architecture of multilayer neural network
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all the inputs from the upper layer based on their
weighting factors m Eq. 9. The second is to process this
sum by a nonlinear sigmoidal function in Eq. 10.

The basic equations describing the dynamics of each
neuron are Eq. 9 and 10:

1, = prxj (9)
1=1
v =0(u;+,) (10)
where:
w; = Design the synaptic weight between the jth
neuron and the ith neuron n two adjacent layers
@ () = The activation function

The neural network has two phases of operations,
traiming and testing. In the traming phase, the weights of
the neural network are adjusted to map the input of the
system to its output. In the testing phase, the neural
network should predict the correct system output for a
given input, even if the input was not used m traimng.
Here for generality, the scalar weighted summing of the
input array xi is distorted by a linear function ¢ (.), which
1s usually sigmoidal (e.g., tanh function) to facilities the
gradient search techniques used in the traiming procedure.
An Adaptive Neural Networks (ANN) is made up of many
such neurons arranged in a variety of architectures. The
feed-forward architecture graph shows mn Fig. 4, offers the
advantage of simplicity and ease of programming.

TRAINING NEURAL NETWORK

The most common method of neural network is error
back-propagation algorithm (Kuchar et al., 2004). The
algorithm is based on the gradient descent search
technique that minimizes a cost fimetion of the mean
square errors. The minimization process 1s done by
adjusting the weighting vector of the neural network.
Several training algorithms have been proposed to
adjust the weight values in dynamic recurrent neural
network. Examples for these methods are the dynamic
back-propagation from Narendra and Parthasarathy (1991)
and Narendra (1996), among others. The cost function
being mimmized 1s the error between the network output
and the desired output given by Eq. 11:

1 1 N 2
E=o el (k)= Xy -y, (k)] ()
1 1
where:
y; (k) The output of neuron
I y*j (k) = The desired pattern for that neuron
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Let, m; (k) denote the learning rate parameter
assigned to synaptic weight w; (k) at iteration number k.
Minimizing Eq. 12 leads to a sequence of update of weight
vector. The weights of the intercommections between two
adjacent layers can be update based on the following
Eq. 12:

JE(kw
w, (k+1)=w,(k)-n;(k+ 1)aV\f(]1(1())+ aAw, (k) (12)
where:

44 = The momentum gain, is susceptible to local
minima and needs additional computation
for gradient evaluation

Aw; (k) = Weight change based on gradient of the
cost function

E,-andk = The iteration number

ADAPTATION LEARNING CONTROL SCHEME

The proposed adaptive neural network controller is
shown m Fig. 6, where as the structure of the neural
network used 1s featured in Fig. 7. In off line traming the
targets are provided by an existing controller, the neural
network adjusts its weights until output from the ANN is
similar to the controller.

The four mput signals (e (k), e (k-1), 13q (k-1), w, (k-1))
and the torque (T (k)) output are exported to the
MATLAB Workspace. The following MATLAB code
trains the Neural Network. The first section of code
generates the cell array. The cell array combines the 4
different inputs into 1 input vector.

The feed-forward network has 10 neurons in the two
layers (Fig. 7). The activation function in the two layers is
tan-sigmoid and the output layer is a linear function.
Where the training is finished, the weights are set Fig. 8
and a simulink ANN is generated. The network is placed
1n the existing PI controller in the block diagram of mdirect
ortented field vector controlled (Fig. 9).

Induction
motor

isgy, »
B, >

/

Fig. 6: Supervised learning using an existing controller
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Fig. 7. Multilayer feed-forward neural network
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Fig. 8: Training error
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processing

RESULTS AND DISCUSSION

The vector controller induction motor drive using
artificial neural network was simulated trough Matlab-

Table 1: Rating of tested induction motor

Rated values Power 1.5 kW
Frequency 50 Hz
Voltage A/Y 220/380 v
Current A/Y 11.25/6.5 A
Motor speed 1420 rprm
pole pair (p) 2
Rated parameters Rs 4.85 Q
Rr 3.805 Q
Ls 0274 H
Lr 0274 H
M 0,258 H
Constants J 0,031 kg m~?
f 0,00114 kg/m/sec
Rotor speed response (rad sec ')
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Fig. 10: Results of speed evolution after resistance
changes

software with simulink toolboxes. The simulation phase
was very important to verify correctness of theoritical
assumptions and to find behaviour of the drive. The
parameters values of the system under study are
summarized in Table 1.

The proportional and derivative parameters of the
proposed control scheme are K, = 0.58 and K; = 11.19.
considered n order to

Several test cases

evaluated the performances under a variety of operating

were

conditions.

For the robustness of the proposed control scheme,
we assure that the parameters of rotor resistance Rr and
load inertia T have been perturbed from their nominal
values Fig. 10 and 11.

The parameters of stator resistance, nductances
It is
evident that the speed response of the proposed

and viscous friction their nominal values.
control scheme 13 not sigmficantly affected by tlus

variation.
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Fig. 12: Speed control system using neural controller
and PI controller
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Fig. 13: Speed control system using neural controller
and PT controller

One can see from these all figures the results were
very successful and the obtamed results confirm the
validity of the proposed control scheme.

Figure 12 shows the behaviour of the system to
screw of resistant torque T = 10 N m, his disturbance
can be seen at t = 0.5andt = 2 sec, m mamtaining the
constant speed control w, = 150 and w,=-150 rad sec™
att=1.5sec.

Figure 13 shows the results by reference without
filter, the results were very successful and the
obtained results confirm the validity of the proposed
controller.

To demonstrate the robustness of the proposed
controller, Fig. 14 displays the results of speed
control using neural controller with stochastic lead
change, the neural controller reduces both the overshoot
and extent of oscillation under the same separating
condition.
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Fig. 14: Speed control using newral controller with
stochastic lead change

CONCLUSION

In this study, we have designed and implemented
the Neural Network Controller NNC, for accurate speed
control of an induction motor. Comparing PI-type control
method, simulation results are provided to illustrate the
performance and the effectiveness of the proposes
control scheme, even in the presence of much strong
mechanical fiction and other non linear characteristics.
The success of the designed controller is demonstrated in
real-time under load conditions by applying a load torque

21

to the shaft of the motor. The results show that the
controller could compensate for this kind of disturbances.
The plant is also tested for the tracking property using
different types of reference signals. Satisfactory
performance was observed for most reference tracks and
the results demonstrated the effectiveness of the
proposed structure and the proposed control scheme it is
believed will constitue a major step in the evolution of
intelligent control of complexe mechatronic systems.
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