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Abstract: This study focuses on extracting the individual source signals from an artificially mixed signal.
Number of signals involved is minimum 3 source signals. An adaptive self-normalized Radial Basis function
network is developed for solving unknown source separation problems. The gradient descent optimization
algorithm 1s applied to update the parameters n the generative model. The performance of the proposed network
15 compared with the model by using temporal predictability and it 1s illustrated with computer simulated
experiments. The scaling problem in the Blind Source Separation using temporal predictability is eliminated by

the proposed ASN-RBF networl.

Key words: Adaptive self-normalized radial basis function neural network, blind source separation, gradient
descent technique, temporal predictability, blind source separation

INTRODUCTION

Blind separation of sources, also called waveform
preserved blind estimation of multiple independent
sources 1s an emerging field of fundamental research with
many potential applications. Jutten and Herault (1986)
were the first to develop a neural architecture and learning
for blind source separation. The neural network models
with learning capabilities for on-line blind separation of
sources from linear mixture signals have been first
developed by Jutten and Herault (1986, 1991) and
Tutten et al. (1991). Since, then a number of variants on
this architecture have appeared in the literature. Li et al.
(2001) have analyzed the performances of speech signal
separation using Recurrent Neural Networks through
higher order statistics. They have mtroduced an
unsupervised learning algorithm to train RNN for speech
signal separation. The clean prerecorded signals were
used as sources mstead of alive speech. An online
algorithm for convolutive mixture based on the notion of
temporal structure of speech signals has been proposed
(Murata and Tkeda, 1989). This online algorithm malkes it
possible to trace the changing environment. The results
are shown for a situation in which a person is speaking in
aroom and moving around. Uncini and Piazza (2003) have

proposed a complex domain adaptive spline neural
network for blind signal processing. They have shown
experimental results on complex signals to show
separation improvements with respect to fixed activation
functions. However, use of flexible activation function
produces fewer improvement for signal deconvolution n
frequency domaimn. This is due to the DFT summation
effect on the input signal. Although, each model derives
from different considerations, they can all be umfied
under the maximum likelithood principle leading to simple
and efficient algorithms. Various statistical methods
(Adib et al., 2004; Xerri and Borloz, 2004; Martinez and
Bray, 2003, Acernese et al., 2003, RyoMukai et al., 2006;
Stone, 2001) and neural algorithms (Amar ef al., 1996;
Cichocki and Unbehauen, 1996, Meyer-Ba et al., 2006,
Zhang et al., 2004, Amari and Cichocki, 1998; Friori, 2004;
Zhang et al, 2001) have been developed by various
researchers for blind signal separation. In Bedoya et al.
(2003), the 3 Neural Algonthms for Blind Source
Separation in Sensor Array Applications are compared by
Bedoya et al., (2003). In Cao et al. (2003), independent
component analysis has been proposed under the
conditions of the sensor signals contaminated with a
high-level additive noise.
technique is used to reduce the additive power of noise,
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the dimensionality and the correlation among sources.
They have proved that a cross-validation technique
estimates the number of sources.

In this study, we propose a novel adaptive self-
normalized Radial Basis Function neural network that
acquires the function of source separation. It uses the
Gradient Descent Algorithm for training the network as
opposed to many online learming algorithms. The network
parameters are iteratively modified to minimize the training
time and convergence rate until the network outputs are
uncorrelated with each other.

PROBLEM DEFINITION

The most general blind source separation problem
can be formulated as follows. Consider the block diagram
shown in Fig. 1.

The problem starts with a random source vector S (1),
defined by S = (5, S, ST, where ‘m’ denotes the
number of independent sources and X = (x,(t), x,(t),
%,(t))" represents the mixed signal. The mixed signal is
produced by a dynamic system, which is nonlinear. It
receives input signals from a number of independent
sources. The mixed signal 1s applied to a linear system. Its
input-output characterization is represented by a non-
singular matrix A. The output 18 given by X = AS. The
objective of the problem is to find an inverse neural
system to see 1if it exists and 1s stable and to estimate the
original input signals thereby. This estimation is
performed on the basis of only the observed output
signal. Preferably, it is required that the inverse system is
constructed adaptively so that it has good tracking
capability under non-stationary environments.

One direct approach to solve the problem is as
follows:

Design a suitable neural network model for the
mverse problem.

Formulate an appropriate energy function such that
global mmimization or maximization of this function
guarantees the correct separation. This function
should be a function of the parameters of the neural
network.

Apply an optimization procedure to derive a learming
algorithm. There are many optimization techniques
based on the stochastic descent algorithms such as
the Conjugate gradient algorithm, Newton’s method
and so on.

Another, approach to solve BSS problem 1s using
Independent Component Analysis (ICA) (www .oursland.
net/tutorials/ica/ica-report.pdf). In ICA, prior mformation
on the statistical properties of the source signals m;(t) are
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Fig. 1: Block diagram of mixing network

used to estimate the mixed weight matrix. Tt is enough to
assume that the 3 source signals m,(t), m,(t) and m,(t) at
each time instant ‘t” are statistically independent. Tt was
originally developed to deal with blind source separation
problems that are closely related to Cocktail-Party problem
and 1t 18 a very general purpose method of signal
processing and data analysis. Another application of TCA
15 feature extraction.
The fundamental issues in BSS are:

The convergence of the learning algorithm and its
speed with the related problem of how to avoid being
trapped in local minima.

Accuracy of the separated signals.

Stability.

Solvability of the problem.

Although, recently many algorithms have been
developed, which are able to successfully separate source
signals, there are still many problems to be studied
(Amari and Cichocki, 1998), such as the development of
learming algorithms which research under non-stationary
environments and when the number of source signals is
unknown and dynamically changing.

Drawbacks of ICA:

The variances of the independent components can’t
be determined.

The order of the independent components can’t be
determined.

Since, TCA separates by maximizing their non-
guassiamty, perfect guassian sources can not be
separated.

The real scale of source signals can’t be recovered.

BSS USING TEMPORAL PREDICTABILITY

This method was proposed by Stone (2001) in the study,
in which covariance of sources are determined. The
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covariance of 2 or more statistically independent variables
1s always zero. The converse is not always true: (1.e.) Just
because the covariance is zero, it does not mean that A
and B are independent. However, in the special case of
Gaussian variables, zero covariance does imply
mndependence. This feature of Gaussian variables 1s used
to find columns of W in W.X = S. In his method, he has
assumed the following:

The mixing matrix 1s non-singular.
The sources are spatially uncorrelated and second-
order nonstationary.

With those assumptions, it was shown that the
simultaneous diagonalization of the long and short term
mixture covariance malrices allows to estimate the
unmixing matrix W. The following algorithm is used to
recover source signals.

Step 1: Set short and long half lives.

Step 2: Set short term mask and long term mask to filter
out each column in the mixing matrix.

Step 3: Filter each column of mixtures array.
¢+ S =TFilter (s_maslk, 1, mixtures).
L =Filter (1 mask, 1, mixtures).

Step 4: Find Covariance matrices.

e U=Cov (3 1) V=Cov(L, 1)
Step 5: Find Eigenvectors M and Eigenvalues d(w d) = eig
(V. ).

Step 6: Recover source signals.
Step 7: Plot results.

Step 8: Rescale ys to zero means and unit variance for
displaying the recovered signals.

ADAPTIVE SELF NORMALIZED RADIAT BASIS
FUNCTION NEURAL NETWORK MODEL

Radial Basis function networks are attracting a great
deal of interest due to their rapid training, generality and
simplicity. Tt has become clear that they are members of a
broader class of techmques (Haykin, 2001). It has been
proven that they are universal approximators, that is
given a network with enough hidden layer neurons, they
can approximate any continuous function with arbitrary
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Fig. 2: Architecture of ASN-RBF neural network

accuracy. This is a property they share with other
feedforward networks having one hidden layer of
nonlinear neurons. Stinchcombe and White have shown
that the nonlinearity need not be sigmoidal and it can be
any of a wide range of functions. Therefore, the generality
of basis function methods is not surprising. Figure 2
shows the topology of ASN-RBF neural network.

Here, the inputs x,, X, ....., X, comprising an input
vector X are preprocessed (i.e.) self normalized and
applied to all neurons in the hidden layer. Each hidden
neuron computes the following exponential function,

h; =e[-D}]/(20)’ (1)
where:
D7 (- W' (X- W)
X An input vector and W, is weight vector of

hidden layer neuron °T".

The output neuron produces the linear weighted
summation of these as given in Eq. (2).

output_of outputn (b) =
(input_to outputn (b)/c) (2)
where, o 1s the parameter, which determines the
conwvergence of the learning algorithm during traning, if
itis very low, the total error becomes NaN. It is increased
gradually, so that for a particular value, the network
converges and the error was reduced to acceptance value.

The weight vector W, determines the value of X,
which produces the maximum output from the neuron; the
response at other values of X drops quickly as X deviates
from W, becoming negligible in value when X 1s far from
W. From this it may be seen that the output has a
significant response to the input X only over a range of
values of X called the receptive field of the neuron, the
size of which 13 determined by the wvalue of spread
parameter ‘0.
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Network operation: The network has 2 operating modes,
training and reference. During traming, the adjustable
parameters of the network (W, o, and the output layer
welght matrix W) are set so as to mimmize the average
error between the actual network output and the desired
output over the vectors m a training set. In the reference
phase, mput vectors are applied and the output vectors
are produced by the networlk.

Rather than starting with random values, the weights
of each hidden layer neuron are set to values that produce
the desired response: A maximum output for an input
identical to its weights, with a lesser output for dissimilar
mputs. & 18 the scaling parameter, which self normalizes
the mput values before they are tramned by the network
and P is the scaling parameter for post processing to
obtain the output data.

Locations of the centers: The location of the centers of
the receptive fields 1s a critical 1ssue and there are many
alternatives for their determination. Tn the learning
algorithm, centre and corresponding hidden layer neuron
could be located at each input vector in the training set.

Determining 0: The diameter of the receptive region,
determined by the value of the spread factor “0” can have
a profound effect upon the accuracy of the system. The
objective is to cover the input space with receptive fields
as uniformly as possible. If the spacing between centers
15 not umform, it may be necessary for each hidden
neuron to have its own value of ‘0”. For ludden layer
neurons whose centers are widely separated from others,
o must be large enough to cover the gap, whereas, those
n the centre of a cluster must have a small ‘0" if the shape
of the cluster 1s to be represented accurately.

ADAPTATION OF THE LEARNING
FUNCTIONS

Training the output layer weight matrix: Once the
centers and ‘0’s have been chosen, the output layer
weight matrix W can be optimized by supervised learning
using gradient descent techmique. The training process
consists of the following sequence:

Apply an input vector X from the training set.
Calculate the outputs of the lndden layer neurons,
collectively referred to as vector “h’.

Compute the networle output vector, y. Compare this
to the target vector t.

Adjust each weight in W" in a direction, which
reduces the difference.
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The following gradient descent algorithm is used for
this purpose.

% Calculation of delta in the output layer
for k= 1: Output_neurons
d1 =sources (i, kK)-output_of _outputn (k);
d2 = 1-output_of outputn (k);
deloutput (K)=output_of_outputn ¢(k)*d1*d2;
end
%Updation of weights between hidden and output layer
for k= 1: Hidden neurons
for kk = 1: Output_neurons
hou (k.kk) = hou (k kk) + Irp*deloutput. (kk)*output_of hiddenn
(33
end
end

Repeat steps (a)-(d) for each vector in the training
set.
Repeat steps (a)-(e) until the error is acceptably small.

Tramming consists of solving the following matrix
equation:

T=HW 3

(or)

W=H'T )

where, H' indicates the matrix inverse of H.

*Implementation of Gradient Descent Algorithm®*

%o(et Sourcel.

(s1, srate, no_bits) = %retums the sample rate (FS) in Hertz and the

wavread (nukeanthem”); number of bits per sample (NBITS) used to
encode the data in the file.

g1 =wavread (nukeanthem.wav', num_samples);

sources (1,: )=s1;

%o(et Source?.

52 =wavread ('dspafxf.wav',

num_sarmples);

sources (2,: ) =82;

%oGet Source3.

§3 =wavread ('UTOPIA. wav', num_samples);

sources (3,:) =s3;

%Make mixing matrix A

A =rand (mum_mixtures, num_sources);

mixtures = sources * A;

%eR ecover source signals

%eoreturns only the first N samples from
each channel in the file.

Step 1: Assign weights between mnput layer and hidden
layer.

Step 2: Find the output of Hidden layer neuron %Forward
operation 18 done here.

Step 3: For each pattern in the training set.

Find h (Hidden layer output).

Find inputs to nodes in the output layer compute he
actual output (for output layer neurons).

Compare the actual output with the target output.
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Step 4: Find the total error at the output layer for each
pattern %Hrror of pattern calculation.

*  Calculation of delta in the output layer.
¢+  Updation of weights between hidden and output
layer.

Step 5: Repeat steps until total error < MSE.

The development of ASN-RBF network and learning
algorithm perform well, which work under nonstationary
environments and when the number of source signals 1s
unknown and dynamically changing.

ANALYSIS AND EXPERIMENTAL RESULTS

A fundamental problem in neural network research, as
well as in many other disciplines, is finding a suitable
representation of multivariate data (1.e.) random vectors.
For reasons of computational and conceptual simplicity,
the representation is often sought as a
transformation of the original data. In other words, each
component of the representation of the data 1s a linear
combination of the original variables.

The simulation results for 3 artificially generated
audio signals using the proposed approach are given in
this section. In the first experimental set up (Fig. 3), the
following 3 signals (PCM audio format) were used.

linear

¢ Signal 1: NukeAnthem.wav (bit rate 176 kbps, audio
sample size and rate-16 bit, 11 kHz).

*  Signal 2: Dspafxf wav (bit rate 352 kbps, audio sample
size and rate- 16 bit, 22 kHz).

* Signal 3: UTOPIA wav (bit rate 352 kbps, audio
sample size and rate- 16 bit, 22 kHz).

These signals (number of samples = 200) are mixed
artificially by the mixing matrix ‘A’ which is given in
Eq. (5). The mixed signal 1s given as nput to the ASN
Radial Basis Function Neural Network and 1t 13 tramed by
the gradient descent algorithm, with learning rate
parameter 1 = 0.99 and spread factor o = 0.01.

0.6038 0.0153 09318
A= 02722 07468 04660 (%)
0.1988 04451 04186

The experumnents are assessed qualitatively by
listening te and viewing the waveforms and are
quantitatively evaluated by the Matlab program
‘rbftestout.m’. The observed signals are conwolutively

(a) Original sources
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Fig. 3: Waveforms for experimental set up-1 (a) Original
sources and mixed signal (b) Separated sources

mixed signals and the offline mmplementation of the
algorithm was done. Number of iterations recquired for
convergence of the algorithm depends upon original
source distributions (which are not known a priori),
learning rate 1 and number of samples. Due to uncertainty
about the source signals, it is not possible to correctly
estimate the time complexity of the algorithm. ASN-RBF
Program was written in Matlab 7.0.

In the second experimental set up (Fig. 4), a mixture of
the 3 birds voices (mumber of samples = 500) (downloaded
from the website: http: //www]1 nhl nl/~ribot
fenglish/sounds 1 html) were used for the simulation:

»  Signal 1: Crowl.wav (bitrate 176 kbps, audio sample
size and rate- 8 bit, 22 kHz).

s Signal 2: Whitewingl . wav (bit rate 48 kbps, audio
sample size and rate- 8 bit, 6 kHz).

»  Signal 3: Songsprwd.wav (bit rate 176 kbps, audio
sample size and rate- 8 bit, 22 kHz).
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a) Original sources
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Fig. 4 Waveforms for second experimental set up-2 (a)
original sources and mixed signal (b) separated
sOurces

BSS USING TEMPORAL PREDICTABILITY

The results obtained by the BSS using temporal
perdictability are illustrated below m the Fig. 5 for a
mixture of the three birds voices with number of
samples = 1000, learning rate parameter 1 = 0.99 and
spread factor 0 = 0.0001.

The nonlimear mixing 1s obtained by the mixing matrix
given in Hq. (6):

0.7990 02120 -0.7420
A=| 09409 02379 1.0823 (6)
20.9921 -1.0078 -0.1315

Correlations between sources and recovered signals
are given below m Eq. (7).

. f) Original source and mixture signal

0 100 200 300 400 500 600 700 800 900 1000
< {0 Signal mixture

=50 100 200 300 400 500 600 700 800 900 1000
< © Recovered signal

N S

T T
0 100 200 300 400 500 600 700 800 9S00 1000

Fig. 5: (a) Original sources and mixed signal (b) signal
mixtures (¢) Separated sources

0.9998 0.0208 0.0045
0.0079 06587 0.7523 )
0.0041 04463 0.8949
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- Original source Table 1: Final weights between Hidden and output layer and weights
1 between input and hidden layer
0.5 hou.mat (weights between Wih.mat (weights between
hidden and output layer) input and hidden layer)
0 1.1602 1.1596 2.5927 0.3509
1 | ] F | 0.6534 1.3711 1.3918 0.3522
0.5 ‘ Hl } H ' 0.9383 21191 2.1479 0.1390
p L1 T || HH\ I '\h o oo o o
0 B T T L1 (D TIRAN) | 1.1767 25891 2,5070 0.3572
1 1.1911 2.5903 2.5963 0.1461
\ \‘ ‘ | ” ‘ 0.3141 0.7877 1.2346 0.1395
0.5 “ ’ 1.1703 1.1804 2.5473 0.4029
0 ‘ bl \lM 2.6018 11602 24932 0.3075
. 2.5857 1.1733 2.4486 0.3968
2.5715 1.1800 2.4594 0.6113
04 Py .
0 50 100 150 200 250 300 350 400 450 500 . ASN-REF sep 1 source 1
. Separated source
2
2+ 0.54
1_
0 0
3 1 BSS sepatated source 1
2-
14 0.5+
; |
3 1] } Al ‘k |
2 | 1 ASN-RBF sepatated source 2
1
77171771711 05'JUWMW”MM\M’WMWM
0 50 100 150 200 250 300 350 400 450 500
Fig. 6: Waveforms for experimental set up-3, (a) original BsS 5
sources and mixed signal, (b) Separated signals 1 1 o
In the tlurd experimental set up (Fig. 6), a whte 0.51
Gaussian noise 18 added to the mixture of 3 source signals o
(number of samples = 500) which were used in second
experimental set up and tested for sumulation: 1 ASN-RBF sepataled source 3
t = 0:0.1:500. 0.5
X = Sources; %3 source signals.
y = Awgn (x, 500, 'measured); %Add white noise. 0
e Signal 1: Crow].wav (bitrate 176 kbps, audio sample 1 BSS scpatated source 3
size and rate- 8 bit, 22 kHz).
*  Signal 2. Whitewingl.wav (bit rate 48 kbps, audio 0.5
sample size and rate- 8 bit, 6 kHz). A ’\
*  Signal 3: Songsprwd.wav (bit rate 176 kbps, audio 0 T T T
0 50 100 150 200

sample size and rate-8 bat, 22 kHz).

+  White gaussian nois. ) ) )
Fig. 7: (a) Comparison of separated source 1 signal, (b)

The algorithm converged to the final weights, which comparison of separated source 2 signal, (c)
are given in Table 1. comparison of separated source 3 signal

177
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Table 2: Qutputs (Quantitative analysis) for the three trials

Testout= Testout= Testout=

WA (1st trial) WA (2nd trial) WA (3rd trial)
ASN-RBF BSS ASN-RBF BSS ASN-RBF BSS
0.4475 0.4339 1.0115 0.4000 0.4000 0.3981
1.0000 0.8900 2.2451 0.4476 0.9816 0.8859
0.4039 0.4000 0.4000 0.3098 1.0000 0.9000
0.4469 0.3860 0.9841 0.4078 0.4000 0.3039
1.0196 1.0000 1.0098 0.4408 0.4468 0.3854
0.4039 0.4000 0.8982 0.7098 1.0000 0.9451
0.4521 0.3847 0.9861 0.4078 0.4000 0.4000
1.0195 1.0000 1.0000 0.4590 0.9849 0.9830
0.4078 0.4039 0.4039 0.3196 1.0098 0.9098
0.4620 0.4534 0.9854 0.4046 0.8765 0.8752
0.9903 21928 2.1933 0.4530 0.4682 0.3772
0.4078 0.8980 0.4000 0.3196 2.2451 1.0000
0.9994 0.4423 0.9547 04118 0.4039 0.4000
1.0295 1.0099 1.0001 0.9952 0.4538 0.4419
04118 0.7294 1.0000 0.9451

0.4000 0.8980

The outputs, which are obtained by the proposed
method ASN-BSF and the method BSS using Temporal
predictability are given in Table 2. Tt has been found that
scaling in ASN-BSF is better than BSS using temporal
predictability for all the 3 trials.

InFig. 7 graphs showing the comparison of ASN-RBF
network and BSS using Temporal Predictability interms of
quantitative analysis.

PERFORMANCE OF THE
LEARNING ALGORITHM

Performance of the learming algorithm for the radial
basis function given by the equation:

(x—wr (x—wr)|
(207
has been evaluated using Rejection Ratio given in the

study (Amari ef al., 1996). The rejection ratio is found by
using the equation:

(&)

¢

1l

2.

=1

m

2.

1=1

|tij‘

max | t, |
«

Lfl 9

p:
max |t |
«

m
1=1

~1 +Zm:
1=1

where, t = {t;} = WA is the system matrix.

Low value of p indicates good separation quality.
Ideally, it should be zero. The value of rejection ratio was
found to be 0.12. This low value even in the case of mixed
sources indicates that this function can be used for signal
separation more efficiently and the effectiveness of the
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Fig. 8: Evaluation of radial basis function over the
mterval-1< x <1 and-1<y=<1
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.9 This graph shows the graph between lrp and
number of iterations required for training and
spread factor o0 = 0.07

0.0 02 03 04

Fig

proposed nonlinear function for the source separation
problems. The radial basis function pln = exp (-di2)/
(2sig)™2 is evaluated over the interval -1<<x <1 and -1<y<1
as shown in the graph in Fig. 8 and 9 show the graph
between learming rate parameter and the number of
iterations with spread factor = 0.07.

CONCLUSION

Many different approaches have been attempted by
numerous researches using neural networks, artificial
higher order statistics,
information, beam forming and

mimmum  mutual

adaptive
cancellation, each claiming various degrees of success.
But, the separation of signals in real environments is still
not that good. This study aims to exploit the application
of adaptive self-normalized radial basis function network

learning,
noise

to Blind Source Separation and it involved in recovering
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original source signals from the mixed signal. An iterative
learning algorithm using gradient descent optimization
technique 18 presented. Clean pre-recorded signals are
used as the sources instead of ‘alive’ signals. The
performance of the proposed network is compared with
the model by using temporal predictability and it 1s
llustrated with computer simulated experiments. The
scaling problem in the Blind Source Separation using
temporal predictability is eliminated by the proposed
ASN-RBF network.
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