M International Journal of Soft Computing 3 (6): 403-406, 2008
We]l

EAL . sl ¥ [SSN: 1816-9503
Online © Medwell Journals, 2008

Intrusion Detection Using Autonomous Agents

3. Janakiraman and *V. Vasudevan
'Anna University, Chennai-600025, India
*Arulmigu Kalasalingam College of Engeering

Abstract: The intrusion detection system architectures universally used in commercial and research systems
have a number of tribulations that limit their configurability, scalability or efficiency. The most common
inadequacy in the existing architectures is that they are built around a single monolithic entity that does most
of the data collection and processing. In this study, we review our architecture for a distributed Intrusion
Detection System based on multiple sovereign entities working collectively. We call these entities Autonomous

Agents. This approach solves some of the problems.

Kev words: Intrusion detection, autonomous agents, commercial IDs, architectures

INTRODUCTION

Intrusion detection: Intrusion detection (ID) is defined
(Mukherjee et al, 1994) as the problem of identifying
individuals who are using a computer system without
authorization and those who have legitimate access to the
system but are abusing their privileges. An intrusion is
defined as any set of actions that attempt to compromise
the integrity, confidentiality, or availability of a resource
(Heady et al., 1990). The broad categorization of models
of intrusion detection described in Mukherjee et al.
(1994).

An Intrusion Detection System (IDS) is a computer
program that attempts to perform intrusion detection
by either misuse or anomaly detection, or a
combination of techniques. An IDS should preferably
perform its task in real time (Mukherjee ef al., 1994).
Intrusion Detection Systems are usually classified
(Mukherjee et al, 1994) as host based or network
based. Host based systems base their verdicts on
information obtained from a single host, while network
based systems obtain data by monitoring the traffic of
information in the network to which the hosts are
connected.

The desirable characteristics of an Intrusion
detection system (Crosbie and Spafford, 1995) includ:

¢ Tt must be fault tolerant in the sense that it must be
able to convalesce from system crashes and
reinitializations.

¢ Tt must defy subversion. The IDS must be able to
monitor itself and detect if it has been modified by an
attacker.

¢ Tt must impose a minimal overhead on the system
where it is running.

¢ Ttmust provide graceful degradation of service in the
sense that if some components of the TDS stop
working, the rest of them should be affected as little
as possible.

¢ Tt must allow dynamic reconfiguration, this is, the
ability to reconfigure the TDS without having to
restart it.

Limitations of existing TD: Many of the existing network
and host based IDSs (Heberlein et al., 1990; Heady et al.,
1990) perform data collection and analysis centrally using
a cmonolithic architecture. By this we mean that the data
is collected by a single host, either from audit trails or by
monitoring packets in a network and analyzed by a single
module using different techniques. Other TDSs perform
disseminated data collection by using modules distributed
1in the hosts that are being momtored, but the collected
data is still shipped to a central location where it is
analyzed by a colossal engine. A good review of
systems that talke both approaches is presented in
Mukherjee et al. (1994). There are a number of problems
with these architectures:

¢ The central analyzer is a single point of failure. If an
intruder can somehow prevent it from working, the
whole networlk is without protection.

¢ Tt is difficult to reconfigure the capabilities to the
IDS. Changes and additions are usually done by
editing a configuration file, adding an entry to a table
or installing a new module.

¢ Analysis of network data can be flawed. As in
(Mukherjee et al., 1994), performing collection of net-
work data in a host other than the one to which the
data is destined can provide the attacker the possi-
bility of performing Insertion and Evasion attacks.

Corresponding Author: S. Janakiraman, Anna University, Chennai-600025, India



Int. J. Soft Comput., 3 (6): 403-406, 2008

Other intrusion detection systems have been
designed to do distributed collection and analysis of
mformation. A hierarchical system i1s described in
Staniford-Chen et al. (1996) and White et al. (1996)
describes a cooperative system without a central
authority. These systems solve some of the problems

menticned.

Autonomous agents: We define an autonomous agent as
a software agent that performs a certain security
monitoring function at a host. We term the agents as
autonomous because they are mdependently-runming
entities. Agents may receive complex control commands
from other entities. An agent may perform a single very
specific function, or may perform more complex activities.

As agents are mdependently rumming entities, they
can be added and removed from a system without varying
other components. Still, agents may provide mechanisms
for reconfiguring themselves without having to restart.
Also, agents can be tested on ther own before
introducing them into a more complex environment. An
agent may also be part of a group of agents that perform
diverse simple functions but that can exchange
mnformation and derive more complex results than any one
of them may be able to obtain on their own.

Since, agents can be stopped and started without
disturbing the rest of the IDS, agents can be upgraded to
new versions and as long as their extemnal interface
remains unchanged, other components need not even
know that the agent has been upgraded.

SYSTEM ARCHITECTRE

We propose architecture for building IDSs that uses
agents as their lowest level element for data collection and
analysis and employs a hierarchical structure to allow for
scalability. A simple example of an intrusion detection
system that adheres to our architecture is shown in Fig. 1.
Figure 1 shows the three essential components of the
architecture: agents, transceivers and monitors.

Our system can be strewn over any number of hosts
in a network. Each host can contain any number of agents
that observe for interesting events occurring in the host.
All the agents in a host report their findings to a single
transceiver. Transceivers are per host entities that
oversee the maneuver of all the agents running in their
host. They exert control over the agents runmng m that
host and they have the ability to start, to stop and to send
configuration commands to agents. They may also
perform data reduction on the data received from the
agents. Finally, the transceivers account their results
toone or more monitors. Hach monitor oversees the

404

O Transceivers  (1Agents
" Monlior  — Gontrol flow

O Host —p» Data flow

Fig. 2: Logic orgamzation of the system

operation of several transceivers. Monitors have access
to network wide data, therefore, they are able to perform
higher level comrelation and perceive mtrusions that
involve several hosts. Monitors can be organized in a
hierarchical fashion such that a monitor may in turn report
to a higher-level momtor. Also, a transceiver may report
to more than one momtor to provide redundancy and
resistance to the failure of one of the monitors.
Eventually, a monitor is responsible for providing
information and getting control commands from a user
interface. This logical orgamzation, which corresponds to
the physical distribution portrayed in Fig. 1 and 2.

All the components export an APT to communicate
with each other and with the user.

Components of the architecture

Agents: An agent is an independently running entity that
monitors certain aspects of a host and reports abnormal
or mteresting behavior to the apt transceiver. The agent



Int. J. Soft Comput., 3 (6): 403-406, 2008

would then engender a report that is sent to the proper
transceiver. The agent does not have the authority to
directly generate an alarm. Usually, a transceiver or a
monitor will generate an alarm based on mformation
received from one or more agents. By coalescing the
reports from different agents, transceivers build a picture
of the status of their host and monitors build a picture of
the status of the network they are monitoring. Agents do
not communicate directly with each other in this
architecture. Tnstead, they send all their messages to the
transceiver. The transceiwver decides what to do with the
information based on agent configuration information. As
long as the agent produces its output in the appropriate
format and sends it to the transceiver, it can be part of this
systerm.
Transceivers: Transceivers are the external comm-
unications interface of each host. They have two roles:
control and data processing. For a host to be monitored
by this system there must be a transceiver runming on that
host. In its control role, a transceiver performs the
following functions:

Starts and stops agents rumning m its host. The
commands to start and stop agents can come either
from configuration information, from a monitor, or as
a retort to specific events.

Keeps track of the agents that are running in its host.
Responds to commands issued by its monitor by
providing the appropriate information or performing
the requested actions.

In its data processing role, a transceiver has the
following duties:

Receives reports generated by the agents running in
its host.

Does appropriate processing on the information.
Distributes information to other agents or to a
momnitor, as appropriate.

Monitors: Monitors are the highest level entities in this
architecture. They also have control and data processing
roles that are similar to those of the transceivers. The main
difference between monitors and transceivers is that a
monitor can control entities that are running in several
different hosts whereas transceivers only control local
agents. In their data processing role, monitors receive the
reduced information from all the transceivers they control
and thus can do higher level correlations and detect
events that involve several different hosts. Monitors have
the capability to detect events that may be unobserved by

405

the transceivers. In their control role, monitors can receive
instructions from other monitors and they can control
transceivers and other momtors. Furthermore, momtors
have the ability to commurnicate with a user interface and
provide the access point for this system.
Communication mechanisms: The transmission of
messages between entitties 13 a central part of the
functionality of this system. Although this architecture
does not specify which communication mechanisms are to
be used, there 1s a minimumn set of characteristics that we
consider desirable.

We consider the following to be some important
points about the communication mechanisms used this
system:

Approprate mechamsms should be used for different
communication needs.

The communication mechanisms should be efficient
and reliable in the sense that they should not add
significantly to the communications load imposed by
regular host activities and provide reasonable
expectations of messages getting to their destination
quickly and without alterations.

The communication mechanisms should be secure in
the sense that they should be resistant to attempts of
rendering it unusable by flooding or overloading and

provide some kind of authentication and
confidentiality mechanism.

» The topics of secure communications, secure
distributed computation and security in

autonomous agents have been already studied
(Staniford-Chen et al., 1996).

IMPLEMENTATIONS

We have developed two models based on this
architecture and we are currently in the process of
improving those implementations as well as developing
new ones.

The first model was programmed i a combination of
Perl (Wall et al., 1996) and C (Kernighan and Ritchie, 1998)
and was intended as a proof of notion for the architecture.
In this implementation, much of the behavior of the
components was hard coded and it was not extremely
configurable. Tt used UDP as the inter host
commurnication mechamsm and Solaris message queues
as the intra-host communication mechanism. This
prototype allowed to:
¢ Tdentify some design issues that had to be improved.
This architecture could work for doing distributed
detection of anomalous events.



Int. J. Soft Comput., 3 (6): 403-406, 2008

Gain some experience in writing agents that allowed
us to identify important functionality that is needed
for all agents.

The second model is written exclusively in Perl,
which has the advantage of making it easy to port to other
architectures at the expense of some performance loss.
The main aim of this implementation s to allow for
widespread testing of the architecture; therefore,
emphasis has been made in its ease of use, configurability
and extensibility.

Some of the major contributions of this new
implementation are:

Increased portability because it 1s written completely
m Perl.

Implementation of an infrastructure that provides all
the base services necessary for developing new
entities.

Defimition of an mternal API for developing new
agents.

These are some of the specific points that we have
identified as relevant for futire work are Developmng
agents, Low-level implementations, Communication
mechanisms, Developing transceivers and monitors,
Semantics of the communication and Data reduction.

CONCLUSION

We propose architecture for Intrusion Detection
Systems, which 15 based on independent entities called
Autonomous Agents for performing distributed data
collection and analysis. Centralized analysis is done on a
per-host and per-network basis by higher level entities
called Transceivers and Momitors. The architecture allows
for computation to be performed at any point where
enough information is available.

This architecture allows data to be collected from
multiple sources, thus bemng able to combine the best
characteristics of traditional host based and network
based TDSs. Tt apparently also allows building TDSs that
are more resistant to insertion and evasion attacks
(Mukherjee et al, 1994) than existing architectures,
although no tests have been performed to support this
claim. Furthermore, the modular characteristics of the

406

architecture allow it to be easily extended, configured and
modified, either by adding new compenents, or by
replacing components when they need to be updated.

User 1nterface 1s a big 1ssue for future work. Most of
the work that has been done m Intrusion Detection
focuses on how to perform the detections, but very little
has been done 1n the way of presenting the information to
the user.

REFERENCES

Crosbie, M. and G. Spafford, 1995. Active defense of a
computer system using autonomous —agents.
Technical Report 95-008, COAST Group, Purdue
University. West Lafayette, IN: 47907-1398.

Heady, R., G. Luger, A. Maccabe and M. Servilla, 1990.
The architecture of a network level mtrusion
detection system. Techmcal report, Umversity of
New Mexico.

Heberlein, L., G. Dias, K. Levitt, B. Mukherjee, J. Wood
and D. Wolber, 1990. A network security monitor. Tn:
Proc. TEEE. Symp. Res. Security Privacy, pp: 296-304.

Kernighan, B'W. and D.M. Ritchie, 1988. The C
Programming Language. Prentice-Hall. 2nd Edn.
Englewood Cliffs, NT 07632, TUSA.

Mukherjee, B., T.L. Heberlein and K.N. Levitt,
1994, Network mtrusion detection. IEEE. Network,
8 (3): 26-41.

Ptacek, T .H. and T N. Newsham, 1998. Insertion, evasion
and demal of service: Eluding network mtrusion
detection. Techmical report, Secure Networks, Inc.

Staniford-Chen, S., S. Cheung, R. Crawford, M. Dilger,
I. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip and
D. Zerkle, 1996. GrIDS: A graph based mtrusion
detection system for large networks. In: Proc. 159th
National Information Systems Security Conference.
National TInstitute of Standards and Technology,
1: 361-370.

Wall, L., T. Christiansen and RL. Schwartz, 1996.
Programming Perl. 2nd Edn. O'Reilly and Associates,

Inc.

White, G.B., EA. Fisch and UW. Pooch, 1996.
Cooperating security managers: A peer-based
intrusion  detection system. ITEEE Networl,
pp: 20-23.



