M International Journal of Soft Computing 2 (5): 572-579, 2007
We]l

ISSN: 1816-9503

Online

© Medwell Journals, 2007

Adaptive Simulated Annealing-Useful Lessons Learned

'A. Iyem Perumal and *S.P. Rajagopalan
"Department of Mathematics, *School of Computer Science and Engineering,
Dr. M. G. R. University, Chennai-95, India

Abstract: Simulated Annealing (SA) is a powerful stochastic search method applicable to a wide range of
problems. Tt can produce very high quality solutions for hard combinatorial optimization problems. SA can be
generalized to fit non-convex cost-functions arising in a variety of problems which is known as Boltzmann
Annealing (BA). The purpose of describing Simulated Quenching (SQ) and Fast Annealing (FA) is to highlight
the importance of Adaptive Simulated Anealing(ASA). ASA 1s a global optimization algorithm based on an
assoclated proof that the parameter space can be sampled much more efficiently than by using the previous

Simulated algorithm.

Key words: Simulated Annealing (SA), Boltzmann Annealing (BA), Adaptive Smulated Annealing (ASA),
Reannealing (RA), Simulated Quenching (30Q). Very Fast Simulated Rearmealing (VFSR)

INTRODUCTION

Adaptive Simulated Annealing (ASA) is a global
optimization algorithm that relies on randomly important
sampling the parameter space. The public release of the
Very Fast Simulated Reannealing (VFSR) code (Ingber,
1989) later known as ASA code (Ingber, 1993a) is quite
stable and free of bugs. This study deals with some
lessons which may be useful to other developers of
Simulated Annealing (SA) code as well as to many users.

ASA ALGORITHMS

“Standard” Simulated Annealing (SA): The Metropolis
Monte Carlo integration algorithm (Metropolis, 1953) was
generalized by the Kukpatrick algorithm to mclude a
temperature schedule for efficient searching (Kirkpatrick
et al., 1983). A sufficiency proof was then shown to put
a lower bound on that schedule as 1/1og(t), where t is an
artificial time measure of the amnealng schedule
(Geman and Geman, 1984). However, independent credit
usually goes to several other authors for independently
developing the algorithm that is now recognized as
sinulated ammealing (Cerny, 1982; Pincus, 1970).

Boltzmann Annealing (BA): Credit for the first sumulated
annealing is generally given to a Monte Carlo importance-
sampling techmque for doing large-dimensional path
integrals arising in statistical physics problems
(Metropolis, 1953). This method was generalized to fitting
non-convex cost-functions arising in a variety of
problems, e.g., finding the optimal wiring for a densely

wired computer chip (Kirkpatrick et al., 1983). The choices
of probability distributions described in this study are
generally specified as Boltzmann annealing (Szu and
Hartley, 1987).

The method of simulated annealing consists of three
functional relationships:

¢+ g.(x) Probability density of state-space of D
parameters x = {x;i= 1, D}, where the subscript T
signifies a parameterization popularly referred to as
the “temperature”.

* h{AE): Probability for acceptance of new cost-
function given the just previous value.

* T(k): Schedule of “annealing” the “temperature” T in
annealing-time steps ke, i.e., of changing the volatility
or fluctuations of one or both of the two previous
probability densities.

The acceptance probability is based on the chances
of obtaining a new state with “energy” F,,, relative to a
previous state with “energy” E,,

h(AE) = exp(-E,_,,/T)
exp(—E,,, /T)+exp(-E,/T)

_ exp{ E,, /T)exp(-E.,/T)
exP(E,../T) [exp(-E,/T) + exp(-E,/T)]

_ 1 (1)
1+ expl(Ey,,-EK) / T]

~ 1

1+ exp(AE/T)

m exp(—AE/T)

Corresponding Author: A. Tyem Perumal, Department of Mathematics, Dr. M. G. R. University, Chennai-95, India

Int. J. Soft Comput., 2 (3): 572-579, 2007

Where AR represents the “energy” difference between the
present and previous values of the energies (considered
here as cost functions) appropriate to the physical
problem, ie, AE = FE,,-E. This essentially is the
Boltzmann distribution contributing to the statistical
mechanical partition function of the system (Binder and
Stauffer, 1985).

This sampling algorithm also can be described by
considering: A set of states labeled by x, each with energy
e(x); a set of probability distributions p(s) and the
energy distribution per state d(e(x)), giving an aggregate
energy L,

Zpx)die(x))=E (2)
The principle of maximizing the entropy,
§ = ~Zpln[px)/p(x)] (3)

WhereX represents a reference state, using Lagrange
multipliers (Mathews and Walker, 1970) to constrain the
energy to average value T, leads to the most likely Gibbs
distribution G(x),

Gix)= %exp(—H(X) /T) 4

mn terms of the normalizing partition function 7 and the
Hamiltoman H operator as the “energy” function,

Z=2exp(—-H(x)/T) (5

For such distributions of states and acceptance
probabilities defined by functions such as h{AE), the
equilibrium principle of detailed balance holds. 1.e., the
distributions of states before, G(x,) and after, G(x,.,),
applyimng the acceptance critenia, h(AE) = h(E,, - E,) are the
sarne:

G h(AEX)) = G(X) (6)

This is sufficient to establish that all states of the
system can be sampled, in theory. However, the annealing
schedule interrupts equilibrium every time the temperature
is changed and so, at best, this must be done carefully
and gradually.

An important aspect of the SA algorithm is to pick
the ranges of the parameters to be searched. In practice,
computation of continuous systems requires
discretization, so without loss of much generality for
applications described here, the space can be assumed to
be discretized. There are additional constraints that are

s0me

required when dealing with generating and cost functions

573

with integral values. Many practitioners use novel
techmques to narrow the range as the search progresses.
For example, based on functional forms derived for many
physical systems belonging to the class of Gaussian-
Markovian systems, one could choose an algorithm for g,
g(Ax) = 2nT)™ expl- (Ax)/(2T)] (7
Where Ax = x-X; is the deviation of x from x, (usually taken
to be the just-previously chosen point), proportional to a
“momentum” variable and where T is a measure of the
fluctuations of the Boltzmann distribution g in the D-
dimensional x-space. Given g{Ax), it has been proven
(Geman and Geman, 1984) that it suffices to obtain a
global mmimum of E(x) if T 1s selected to be not faster
than
T,
In

(8)

T()=

with T, “large enough”.

For the purposes of this study,
demonstration follows, to show that Eq. 8 will suffice to
give a global mmimum of E(x) (Szu and Hartley, 1987). In
order to statistically assure, 1.e., requiring many trials, that
any point in x-space can be sampled Infinitely Often in
annealing-Time (TIOT), it suffices to prove that the
products of probabilities of not generating a state xIOT
for all annealing-times successive to k; yield zero,

a heurstic

L] (-g)=0 ©

This is equivalent to,

Lt Tg, — (10)

as seen by taking the log of Eq. 9 and Taylor expanding in
g The problem then reduces to finding T(k) to satisfy
Eq. 10. Note that, given a very large space to sample,
often at best only a “weak” ergodicity can be assumed for
this proof and any such ergodicity even for well-
understood physical systems 13 an open area of research
(Ma, 1985).
For BA, 1if T(k) 1s selected to be Eq. 8, then 7 gives

cO

v T 1k=w (D
- k=lko

a0
z
k=ko

exp(—Ink) =
k

Although there are sound physical principles
underlymg choices of Eq. 7 and 1 (Metropolis et al., 1953),

Int. J. Soft Comput., 2 (3): 572-579, 2007

it was noted that this method of finding the global
minmum m x-space was not limited to physics examples
requiring bona fide “temperatures” and “energies”.
Rather, this methodology can be readily extended to any
problem for which a reasonable probability density h(Ax)
can be formulated (Kirkpatrick et al., 1983).

Simulated Quenching (SQ): Many researchers have
found it very attractive to take advantage of the ease of
coding and implementing SA, utilizing its ability to handle
quite complex cost functions and constraints. However,
the long time of execution of standard Boltzmann-type SA
has many times driven these projects to utilize a
temperature schedule too fast to satisfy the sufficiency
conditions required to establish a true (wealk) ergodic
search. A logarithmic temperature schedule is consistent
with the Boltzmann algorithm, e.g., the temperature
schedule is taken to be

In k,
k

k

n (12)
In

Where T is the “temperature”, k is the “time” index of
ammealing and k; 13 some starting index. Tlis can be
written for large k as

Ink,Ak

=-T, —.k=>1
k(Ink)
T =T~ nlnikng (13)
kiln k)
However, some researchers using the Boltzmann
algorithm use exponential schedules, e.g.,
T, =cT.0<c <l
A—T: {c—DAkk==1
K
T, =Ty exp ((c-1)k) (14)

with expediency the only reason given.

Fast Annealing (FA): Although there are many variants
and improvements made on the “standard” Boltzmann
algorithm described above, many textbooks finish just
about at this point without going mto more detail about
other algorithms that depart from this explicit algorithm
(Van Laarhoven and Aarts, 1987). Specifically, it was
noted that the Cauchy distribution has some defimte
advantages over the Boltzmann form (Szu and Hartley,
1987). The Cauchy distribution they define 1s

574

T

_ 15
((AX)Z N Tz)(mmz ()

glAx)

which has a “fatter” tail than the Gaussian form of the
Boltzmamn distribution, permitting easier access to test
local minima in the search for the desired global minimum.
Tt is instructive to note the similar corres ponding heuristic
demonstration, that the Cauchy g(Ax) statistically finds a
global minimum. If Eq. 8 is replaced by

T
T(k)= -2 (16)
(k) .
then here
N T, <1 (17)
"2 — =D
%gk AXDH%:k

Note that the “normalization™ of g has mntroduced the
annealing-time mdex k, giving some msights mto how to
construct other annealing distributions. The method of
FA 15 thus seen to have an annealing schedule
exponentially faster than the method of BA. This method
has been tested in a variety of problems (Szu and Hartley,
1987).

Adaptive Simulated Annealing (ASA): In a vaniety of
physical problems we have a D-dimensional parameter-
space. Different parameters have different fimite ranges,
fixed by physical considerations and different annealing-
time-dependent sensitivities, measured by the curvature
of the cost-function at local mimma. BA and FA have g
distributions which sample infinite ranges and there is no
provision for considering differences in each parameter-
dimension, e.g., different sensitivities might require
different annealing schedules. These are among several
considerations that gave rise to Adaptive Simulated
Amnealing (ASA). Full details are available by obtaining
the publicly available source code (Ingber, 1993a).

ASA considers a parametere, in dimensions i
generated at annealing-time k with the range

o, €[AB,], (18)
calculated with the random variable v,
Oy = O + Y (B — A,
yiel[-1.1]
(19)

Define the generating function

Int. J. Soft Comput., 2 (3): 572-579, 2007

v}

o 1
I1

: (20)
“2()y' [+ T+ 1T)

gr(y)= =g (y")

Where the subscript i on T, specifies the parameter index
and the k-dependence m T,(k) for the annealing schedule
has been dropped for brevity. Tts cumulative probability
distribution 1s

1 D
¥ ¥

Gy = [dy" .y P, () = Gy ()

-1 -1

G'T(y‘):%+

sgn(y') In(1+ ‘Yl‘/Ti)
2 In(+VUT)

(21)

v 18 generated from a v’ from the uniform distribution
u eU[0,1]

] (22)

yl—sgn[ul—;]m(mm 1)

Tt is straightforward to calculate that for an annealing
schedule for T;

T.(k) = T, exp(—c k") (23)
a global minima statistically can be obtained. Le.,
DI 4
kg kg i=1 Q‘Yl‘cl k
It seems sensible to choose control over ¢, such that
Ts = Ty, exp (-m;) when k; = exp o,
¢, =m, exp (/D) (25)

Where m; and n; can be considered “free” parameters to
help tune ASA for specific problems.

Tt has proven firuitful to use the same type of
annealing schedule for the acceptance function h as used
for the generating function g, i.e., Eq. 23 and 25, but with
the number of acceptance pomts, instead of the number
of generated points, used to determine the lk for the
acceptance temperature.

In one implementation of this algorithm, new
parametersd,., are generated from old parameters o, by
generating the y's until a set of D are obtained satisfying
the range constraimts. In another alternative supported in
ASA, weful for some constraint problems, the y's are
generated sequentially for each test of the cost function.

575

Reannealing: Whenever doing a multi-dimensional search
in the course of a real-world nonlinear physical problem,
inevitably one must deal with different changing
sensitivities of the « in the search. At any given
annealing-time, it seems sensible to attempt to “stretch
out” the range over which the relatively msensitive
parameters are being searched, relative to the ranges of
the more sensitive parameters.

It has proven fruitful to accomplish this by
pericdically rescaling the ammealing-time k, essentially
reannealing, every hundred or so acceptance-events
(or at some user-defined modulus of the number of
accepted or generated states), in terms of the sensitivities
s, calculated at the most current minimum value of the
cost function, L,

s, = dL/Oc (26
In terms of the largest s, = s,.. a default rescaling
1sperformed for each k of each parameter dimension,
whereby a new index k', 1s calculated from each k,

k- K,
Tike = T (8253,
k', = (n(Ty/ Ty)e)" 27

T, is set to unity to begin the search, which is ample
to span each parameter dimension.

The acceptance temperature similarly
rescaled. Since the 1mtial acceptance temperature 1s
set equal to en imtial tnal value of L, this 1s typically
very large relative to the current best mimimum, which
may tend to distort the scale of the region currently
being sampled. Therefore, when this rescaling
performed, the mitial acceptance temperature 1s reset to
the maximum of the most current minimum and the best
current minimum of L and the annealing-time index
associated with this temperature is reset to give a new
temperature equal to the minimum of the current cost-
function and the absolute values of the current best and

i

1s

last minima.

Also generated are the “standard deviations™ of the
theoretical forms, calculated as [@°LAGa' Y™, for each
parameter ¢, This gives an estimate of the “noise™ that
accompanies fits to stochastic data or functions. At the
end of the run, the off-diagonal elements of the
“covarlance matrix” are calculated for all parameters. This
inverse curvature of the theoretical cost function can
provide a quantitative assessment of the relative
sensitivity of parameters to statistical errors in fits to
stochastic systems.

Int. J. Soft Comput., 2 (3): 572-579, 2007

Quenching: Another adaptive feature of ASA is its ability
to perform quenching in a methodical fashion. This is
applied by noting that the temperature schedule above
can be redefined as

Tk) =T, exp (-ck*'")

¢, =m, exp (-n,Q./D) (28)

m terms of the “quenching factor” Q;. The above proof
failsat Eq. 241 Q. > 1 as

D
TP =3 1/k® < o0 (29)
k k

This simple calculation shows how the “curse of
dimensionality” arises and also gives a possible way of
living with this disease. In ASA, the mfluence of large
dimensions becomes clearly focused on the exponential
of the power of k being 1/D, as the annealing required to
properly sample the space becomes prolubitively slow.
So, if we cannot commit resources to properly sample the
space ergodically, then for some systems perhaps the next
best procedure would be to turn on quenching, whereby
Q, can become on the order of the size of number of
dimensions.

The scale of the power of 1/D temperature schedule
used for the acceptance function can be altered m a
similar fashion. However, tlus does not affect the
annealing proof of ASA and so this may be used without
damaging the (weak) ergodicity property.

ASA applications: The above defines this method of
Adaptive Simulated Annealing (ASA), previously called
Very Fast Simulated Reannealing (VFSR) (Ingber, 1989)
only named such to contrast it the previous method of
fast annealing (Szu and Hartley, 1987). The annealing
schedules for the temperatures Ti decrease exponentially
in annealing-time k, i.e., T,=T,; exp (-ck""). Of course, the
fatter the tail of the generating function, the smaller the
ratio of acceptance to generated pomts in the fit.
However, in practice, it 15 found that for a given
generating function, the ratio is approximately constant as
the fit finds a global minimum. Therefore, for a large
parameter space, the efficiency of the fit is determmed by
the annealing schedule of the generating function.

A major difference between ASA and BA algorithms
is that the ergodic sampling takes place in an ntl
dimensional space, 1e., in terms of n parameters and the
cost function. In ASA the exponential annealing
schedules permit resources to be spent adaptively on
reannealing and on pacing the convergence m all

576

dimensions, ensuring ample global searching in the first
phases of search and ample quick convergence m the final
phases.

ASA OPTIONS

ASA likely 1s the most powerful and flexible SA code
presently available, because the code has benefited from
the feedback of many users and their feedback has been
used to add much to the code beyond the basic ASA
algorithm described above.

The code has two basic modules in the ASA C-code,
a user and an asa module. All options in the code have
been tested to work with templates provided in the user
module. Feedback has developed a code which seems to
run well across many platforms, e.g., PC’s, Macs, Crays,
many UNIX workstations, etc.

The emphasis in development of ASA has been to
add power and flexibility wherever possible. To make
these extra features and code accessible to non-expert
programmers, a “meta-language” of options is used.
Many of these options can be set in the provided
Malkefile, an asa opt data file from which to read in
information, arguments passed to the compilation
procedures, or in the user module files.

Adequate investment has been made for continual
development of a more powerful and more flexible code.
The new user 1s presented with many options, on the
order of a hundred. Tn many cases, when the ASA default
options work fine, only the user’s own call to lus/her cost
function is required. However, if these defaults are not
suitable for a particular system, then the user can become
bewildered by the many options. If not much is known a
priori about the system to be optimized, then the task 1is
to try to find the values of the options appropriate to the
given system. The less known about the system, the
harder is this task.

Experiences support the premise that the output of
the code, using the ASA PRINT MORE OPTIONS to
give information at each new best accepted state, often
can be used to diagnose problems in annealing.
Eventually, we hope that enough experience will be
generated, to be able to develop some kind or graphical
menu-driven expert system to help guide users to optimize
a wide range of cost functions.

Examples of options: The following discussion of some of
the options available in ASA also serves to illustrate the
typical kinds of problems many users have with their
particular systems and some of the approaches that SA
can offer to face these problems. The options are
organized into three groups. The define options

Int. J. Soft Comput., 2 (3): 572-579, 2007

comprise two sets of options, the Pre-Compile
define options and the Printing define options, which are
called at the time of compilation; these comprise about
half of the options. The other Program options are housed
in a structure passed with the cost function and together
with the other parameters passed in the cost function,
these can be modified adaptively. That is, they can be
changed within the cost function to take effect upon
reentering the ASA program.
Integer and continuous parameters: ASA can
accommodate mixture of integer and continuous
parameters. This is accomplished quite simply, with a
small overhead for integers, by truncating generated
floating-point numbers within sensible integral windows.
There have been many rumours that SA can only handle
integer or continuous parameters, but these statements

are unsupported.

Constraints: One of the immediate attractions of SA to
people trying to optimize complex systems 1s the ease with
which SA can accommodate complex constraints.
Typically, there 13 no need for penalty functions, etc.
Generated points that do not satisfy the constramts are
simply rejected before trying any acceptance test.

Equality constraints, if processed will present a
problem for any global optimization that relies on
sampling, because the search is being constrained on the
surface of some volume and the entire volume is being
sampled. Therefore, it is recommended that the user first
numerically substitute solution(s) of the equalities for
some parameters. For example, 1if the cost function C has
n parameters, C(p;, P, ..
exists between parameters p, and p,,, then solve this
equation for p,, numerically or algebraically, redefining the
cost function to one with n-1 parameters, C’. If the
solution to this equation, or perhaps a set of m such
equality constraints to reduce the number of parameters
actually processed by ASA to n-m, is not simply written
down, then such constraints must be solved with other
algorithms within the cost function.

, Pu) and an equality constraint

Annealing scales: Perhaps the easiest to understand
problem that can arise when using SA, also 18 the most
often neglected. A question may arise that why ASA
doesn’t immediately find the global optimal pomt? The
answer most often lies mn the scaling parameters used in
anmealing the parameter and/or cost temperatures.

For example, if the search is carried out in a system
with several local mimma, but the temperature 15 too low
s0 that only rarely can the search sample these minima, it
may take an extremely long time with arbitrarily good

577

numerical precision to eventually sample these minima as
normal amnealing proceeds to lower and lower
temperatures. Clearly, it would be better to have the
starting temperature at the scale in question be
commensurately larger and perhaps be cooled more
slowly.

Parameter temperatures: In some SA algorithms, like BA,
the starting temperature the of
temperature encountered at subsequent stages of search.
In ASA, because of the fimte ranges of the parameters,
the parameter temperatures are started to establish to a fat
tail throughout the range; the exponential annealing rates

controls values

usually permit selecting even quite large mitial ranges to
be sure of covering all optina. There are free ASA-
parameters for each temperature to scale its exponential
decrease, without affecting the basic sampling proof.

Cost temperature: The annealing scale for the cost
temperature, also called the acceptance temperature,
affects the rate of narrowing the window of the Boltzmann
acceptance test. In ASA, this scale can be adaptively
changed and even the Boltzmamn test can be changed to
a different distribution.

Reannealing

Parameter temperatures: For the parameter temperatures,
the tangents (or any other alternative functions that might
be defined by the user) are used as a relative measure of
the “steepness”™ of each dimension the most recent best
saved state. As demonstrated for the ASA TEST problem
(Ingber, 1993h), this feature can enhance the efficiency of
the search.

Cost temperature: For the cost temperature, a separate
options permits rescaling of the cost temperature to
be set to the scale of the minimum of the current cost
temperature and the absolute values of the last and
best saved mimma, to keep the acceptance test sensitive
at a reasonable scale. This can be extremely important of
the system’s terrain changes with the scale of the
search. This procedure also may need to radically altered,
possible with other options, if the search early becomes
struck in local optima, e.g., because the system’s terrain
abruptly changes with the scale of the search.

Quenching: An SA algorithm loses much of its authority
if the search “cheats” by trying to anneal at rates faster
than permitted by its associated proof, e.g., Simulated
Quenching (SQ). However, this can be useful in a number
of circumstances (Ingber, 1993b).

Int. J. Soft Comput., 2 (3): 572-579, 2007

When the dimension of a parameter space, each
parameter having a continuous or large integral set of
values, reaches 15-20, the volume of search typically
becomes quite large and this can severely tax most
present-day workstations. Instead of just giving up on
SA and trying a different “greedy” and/or quasi-Newton
algorithm, ASA provides a methodical way to deviate
from SA into SQ algorithms.

As another use of quenching, one that does not
necessarily violate any sampling proof, it may be useful in
the course of search to adaptively drop subsets of
parameters that seem to have been reasonably optimized
relative to other parameters. The remaining parameters can
then be more efficiently searched within their smaller
dimensional space, by adjusting the dependence of the
annealing to the This
accomplished conveniently with the quenching options.

new dimension. can be

ASA sampling: Since ASA accomplishes its fit by
umportance sampling the space of parameters, it would
seem that this process should provide a good sampling
technmique for other purposes, e.g., performing integrals.
As stated above, the use of Monte Carlo techniques for
performing integrals (Metropolis ef af., 1953) 1s generally
credited to be the origin of the development of SA
(Kirkpatrick et al., 1983). However, importance sampling
with the fastest permitted temperature schedules often
can lead to quite poor resolutions of local minima which
may substantially contribute to integrals. Then, the rates
of annealing must be slowed down, e.g., using inverse
quenching, to get better resolution. The ASA SAMPLE
options collects the generating and acceptance biases
incurred during importance sampling, so that this
mformation can be used more generally than for just
finding the optimal point of the fit.

Self optimization: An advantage of C code over some
other languages is the relative ease by which recursive
calls can be implemented. Some care must be taken to
keep variables local to each subroutine. In its current form
ASA can recursively call itself. Some complex problems,
possessing nests of optimized systems, require this.

If not much information 1s known about a particular
system, if the ASA defaults do not seem to work very well
and if after a bit of experimentation it still is not clear how
to select values for some of the ASA options, then the
self-optimize options can be very useful. This sets up
a top level search on the ASA options themselves,
using criteria of the system as its own cost function, e.g.,
the best attained optimal value of the system’s cost

578

function (the cost function for the actual problem to be
solved) for each given set of top level options, or the
number of generated states required to reach a given
value of the system’s cost function, etc. Since this can
consume a lot of CPU resources, it is recommended
that only a few ASA options and a scaled down system
cost function or system data be selected for thus
options.

Even if good results are being attained by ASA,
self optimize can be used to find a more efficient set of
ASA options. T think that this kind of options would be
useful for many non-linear optimization algorithms. Many
of the options broken out in clear view in ASA are
similarly represented but “hidden” within the code of
other algorithms. Self optimization of such parameters can
be very useful for production runs of complex systems.

Alternative distributions/functions: There are options to
permit replacing or modifying the functions and
distributions used in the ASA module. For example,
modifications can be made of the generating function
(e.g., variants of the Boltzmann and Cauchy distributions
are given in the user module), the acceptance function
{e.g., a class of functions that asymptotically approach
the Boltzmann function is given in the user module) and
the reannealing functions used to rescale the parameter
and cost temperatures.

Parallel code: It is quite difficult to directly parallelize an
SA algorithm (Ingber, 1993b) e.g., without incurring
very resirictive constraints on temperature schedules
(Kimura and Taki, 1991) or violating an associated
sampling proof (Frost, 1993). However, the fat tail of ASA
permits parallelization of developing generated states
prior to subjecting them to the acceptance test (Ingber,
1992). The ASA parallel options provide parameters to
easily parallelize the code, using various implementations,
e.g., shared memory.

The scale of parallelization afforded by ASA, without
violating its sampling proof, is given by a typical ratio of
the number of generated to accepted states. Several
experts in parallelization suggest that
parallelization e.g., on the order of the human brain, may
take place quite far into the future, that this might be
somewhat less useful for many applications than

massive

previously thought and that most useful scales of
parallelization might be on scales of order 10-1000.
Dependmg on the specific problem, such scales are
common in ASA optimization and the current ASA code
can implement such parallelization.

Int. J. Soft Comput., 2 (3): 572-579, 2007

CONCLUSION

If asked to state one major common feature of
nonlinear system m the context of optimization, the
feature most likely should be given 1s that nonlinear
system typically are non-typical. It 1s unlikely that any
“cammed black-box™ code can be developed, requiring no
or few minor adjustments, that will usefully guarantee
efficient global optimization for severely nonlinear system,
e.g., similar to what might be expected for many quasi-
linear system.

In the absence of knowledge about a particular
system, given that only SA can offer at least a
“statistical” proof of global optimization, then the first
algonithm of choice clearly 15 SA. Modification of SA, e.g..
SQ quenching algorithms, may be competitive with other
techmques, e.g., simplex or genetic algorithms, but among
these the best choice 1s not so clear. SQ does offer a
relatively simple approach to quickly writing code for
optimization, but ultimately the end results must justify
this means.

This argument for the use of SA has an opposite
side. If some information about a system can be
incorporated into some other global optimization
technique and it can be determined that the technique
can deliver the global optimum point, often that techmque
will be more efficient than SA. E.g.. a quasi-Newton
algorithm will be more efficient than SA for parabolic
systems.

For many researchers, the first choice of algorithm to
use for a nonlinear or stochastic problem likely will be one
with which they already are familiar, if that fails, SA is an
option to try next. More research needs to be done to see
if a more objective classification of nonlinear system can
be developed to help guide a given researcher to a given
algorithm for a given problem. As the examples included
i1 the documentation of the ASA code illustrate, there
have been “surprises” whereby some very difficult
problems have been quickly solved by ASA, while others
have required quite a bit of “tuning” to establish a good
set of starting options.

Especially among first users of SA, often there 1s
much misunderstanding and lack of appreciation of just
what an SA code can immediately do for a particular
problem. Some education is necessary to make users
aware of the potential problems that may arise and what
remedies the particular algorithm can offer to overcome
these obstacles.

579

REFERENCES

Binder, K. and D. Stauffer, 1985. A Simple Introduction to
Monte Carle Simulations and Some Specialized
Topics, [n: Applications of the Monte Carlo Method
in Statistical Physics, K. Binder (Ed.), Berlin,
Springer-Verlag.

Cemny, V., 1982, A thermodynamical approach to the
traveling salesman problem: An efficient simulation
algorithm, Report, Bratislava, Czechoslovakia,
Comenius University.

Frost, R., 1993, Ensemble Based Simulated Annealing
(EBSA), fip.sdsc.edu/pub/sdse/math/Ebsa, La Tolla,
CA, Umversity of California San Diego.

Geman, S. and D. Geman, 1984. Stochastic relaxation,
Gibbs distribution and the Bayesian restoration in
images, IEEE. Trans. Patt. Anal. Mac. Int., 6: 721-741.

Ingber, L., 1989. Very fast simulated re-annealing, Mathl.
Comput. Modelling, 12: 967-973.

Ingber, L., 1992. Generic mesoscopic neural networks
based on statistical mechanics of neocortical
interactions, Phys. Rev. A., 45: 2183-2186.

Ingber, L., 1993a. Adaptive Simulated Amnealing (ASA),
[ftp.alumni. Caltech.edu:/pub/ingber/ASA-shar, ASA-
shar.Z., ASAtar.7., ASA tar.gz, ASA zip], Mclean,
VA, Lester Ingber Research.

Ingber, L., 1993b. Simulated annealing: Practice versus
theory, Mathl. Comput. Modelling, 18: 29-57.

Kimura, K. and K. Taki, 1991. Tune-homogeneous parallel
annealing algorithm, Report TR-673, Tokyo, Tapan,
Institute for New Generation Computer Technology.

Kirkpatrick, S., CD.IR. Gelatt and M.P. Vecchi, 1983.
Optimization by simulated annealing, Science,
220: 4598, 671-680.

MA, SK. 1985 Statistical Mechanics, Philadelphia,
World Scientific.

Mathews, J. and R.I. Walker, 1970. Mathematical
Methods of Physics, (2nd Edn), New York,
Benjamin.

Metropolis, N., 1953, Equation of state calculations
by fast computing machines, I. Chem. Phys.,
21: 1087-1092.

Pincus, M., 1970. A Monte Carlo method for the
approximate solution of certan types of constraint
optimization problems, Oper. Res., 18: 1225-1228.

Szu, H. and R. Hartley, 1987. Fast sunulated annealing,
Phys. Lett. A., 122: 157-162.

Van Laarthoven, P.JM. and EH.L. Aarts, 1987. Sumulated
Amnealing: Theory and Applications, Dordrecht, The
Netherlands, D. Reidel.

