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Abstract: An entirely automatic procedure for the classification of cerebral tissues from Magnetic Resonance
Nuclear imaging (MRN) 3D of the head are described in this study. This procedure doesn't make any
assumption nor on the number of classes nor on the shape of the density. Indeed, this last is estimated by a
non parametric method, it is about the method of the Parzen's Kernel. A new objective function is proposed to
improve the FCM algorithm by the addition of one term of entropy aiming to maximize the number of good
ordering. A supplementary correction is operated by a probabilistic procedure said of fuzzy relaxation including
the probabilities of the neighboring points. The validation of the algorithm is made on simulated data and on

real cerebral imaging RMN.
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INTRODUCTION

The segmentation can be described as the definition
of groupings, in the parametric space, where the pomts
are assoclated to the different sets of values of similar
mtensities n the different unages. As consequence, in
this approach, the process of grouping is the main step in
the procedure of segmentation'™*? and the techniques
based on the automatic grouping are reputed to be more
robust for the separation of the different tissues in
presence of noise and imprecise data, in relation to the
techniques of contours detection'.

Besides, the uncertainty is largely present in the
medical images because of the noise (during the
acquirement) and of the effects of partial volumes. It
means that the values of the voxels, especially to the
borders between volumes of interest, correspond to the
miscellanies of different anatemical tissues, because of
the low resolution of the sensors. As consequence,
the borders between tissues are not defined correctly
and the adherences n the limits of the regions are
intrinsically  fuzzy. To these
considerations, our choice for the segmentation of the

shortcoming  all

anatomical tissues carried itself on the methods of
analysis of data whose principle is founded mainly on the
fuzzy automatic grouping.

The first studied fuzzy method concerns the
algorithm of the Fuzzy C-Means (FCM) by J. BezdekP.
The FCM algorithm requires a priori defimtion of the
number of classes and its results depend of this number.
The application of this algorithm to the segmentation of
medical images is described in™?. The second method

exposed in this article is an improvement of the first
aiming to optimize the number of classes and to maximize
the number of good orderings and it by the addition of
one regulating term server to mimmize the entropy of the
histogram of the classified image. Another refinement 1s
operated by an algorithm that permits to take in
consideration the spatial relation between the different
voxels, 1t 1s about the fuzzy relaxation that 13 an extension
of the probabilistic relaxation®™.

ESTIMATION OF PROBABILITY
DENSITY FUNCTION (PDF)

The data to classify are in a 0" space of dimension.
Let's consider a sample of N data (X}).,.,, represented by
N pomts with: (X, = ¥ i1 %z --» ¥io)- The probability
density function 1s defined on By a function f satisfying
at least to the following conditions:

Vre R (020 e [ fix)de=1 (1)

In the practice, this function f 1s unknown; several
methods exist to estimate it. The most widespread method
consists in approaching the function f by a histogram, but
the gotten evaluation doesn't present the properties of
continuity required by most applications. Besides, the
widths of the classes (or elements) of the histogram are
delicate to determine.

Among the methods of evaluation of the density by
a continuous function, one of the most known 15 the
method of the k nearest neighbors. The estimation of the
probability density fimetion 1s defined by:
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where k is the fixed number of the nearest neighbors
(typically k = N ") and d, (x) is the distance of x to its
k* nearest neighbor (while classifying by order growing
the distances of x to each of the N given data, d, (x) is the
K™ distances).

The estimation by the nearest neighbor’s method
doesn't permit to get a derivable function and besides it
will give the peaks corresponding to data situated in the
densest regions. In the literature, one considers that
these continuous estimations but non derivable of the
density are not smoothed enough and remain approximate
enough!"*,

The based methods solely on the maximum likelihood
permit to derive the estimated function, but the
interpolation enters the data is merely heuristic. The

verisimilitude of the estimated density function fﬂ' for the
sample (3)...y 18 defined by:
~ N 3
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Maximizing the wverisimilitude doesn't permit to
estimate the density outside of the sample (X (X
(ie. 1“_« (x ) for x = X)). It is necessary to unpose some

a

restrictions to ¢ permitting an acceptable mterpolation of

;_ enters the data. These restrictions or penalties have for

goal to smooth the estimated function. Tn dimension 1,
one uses the most often a criterion of the following type:

~af (s

( ) Elogf (4

The first term

¥, log £(x

is the logarithm of the verisimilitude that it is necessary to
maximize, the second term

al ()

is a penalty that it is necessary to minimize and that is
controlled by the parameter ¢. This parameter is adjusted
to smooth more or less the estimation of the density™*"1.
In dimension 2 or more, this method of the penalties is
more delicate to put in work, it i1s necessary to find the
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good compromised between the parameter of smoothing
and the vensimilitude. In this type of approach, the part of
heuristic 1s 1mportant. Because of this required lack, it
seemed preferable to us the classical kernel’s method to
estimate the density (even named Parzen-Rosenblatt’s'

method) described below.

A. parzen-rosenblatt’s method: Tn Parzen-Rosenblatt’s
method, we estimate the density of probability while using
a convolution kemel. The kernel 1s a function k that 1s
generally itself a function of probability density. In this
description, we take like kernel the multi-normal function
{centered and reduced) definite by!''?:

]

h being the parameter of smoothing of the estimation.

In this density approach, each data X contribute in
the same way to the calculation of fand this contribution
depends on h. The kernel k being a unimodal and positive
function, the contribution of every data to I be added and
is worth at more

1
NE®

x—X
h

vrc R, f(x)= Q)

>

i=1

1
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(the masximal contribution of a data ¥, to 1“_« (x) 15 gotten

when x = X). This estimation of the probability density
corresponds to a convolution of the function k with the
function definite by:

)

1
N i=1

A(x)

with 8,(x)=

5,

(=)

if x=X,

otherwise

(6)
0

1

The parameter h corresponds to the square root of
variance of the kernel k. More h, will be small, more the
kernel will be narrow and ;_ will present some peaks of

probabilities to the pomts X, In this setting, h be called
the window of the estimation or window of smoothing.
This type of estimation of the probability density function
depends on the choice of the smoothing window!'?

FCM CLASSIFICATION

A. definition of the classical criteria: The stage of
classification consists in minimizing the criteria defined
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by the Eq. 7 that is not anything else that a generalization
of the classic criteria of the k-middle (sum of the intra-
class distances):

Mz

)

i=1
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Jr

[
1l

1

under the following constraint:

i
B

where m characterizes the degree of fuzziness (when m
grows we introduce more fuzzy), C represents the number
of classes, N numbers of its pixels, ¢ 1s here the
characteristic vector of the class 1 and d&° (x;, ¢) is the
Euclidian distance (it 1s possible to use another
distance’™ between the point j and the prototype of
the class).

The minimization of J takes place in two stages: in the
first stage we minimize the functional in relation to the;
¢; then the ¢, being fixed, we minimize the functional in
relation to the u,*'”

The algorithm is represented by (one supposes that
C and m are well known):

u, = ! — si {,=¢
o g« =
; dz((x ck)) ®)
uU:O iEIf _
Eiei uif =1 ie Ij ” [j iﬁb

with I, ={il<i<C,d*(x,¢) =0}

B.-definition of a new criteria: It appeared interesting to
us a given algorithm in which we would not have to fix the
nmumber of classes but that would determine an optimal
mumber of classes automatically. Tn this optics, we were
mspired by works achieved by two teams. The first have
been done by H. Frigui and R. Krishnapuram!¥. The
characteristic function to minimize includes two terms.
The first 15 a classic term characterizing the intra-class
distance (generalized to the fuzzy case) and corresponds
to the Eq. 7. The second term aims to maximize the number
of good points in every class. Tt is about a pondered
sum of adherence degrees.

The other team"*'? worked also on the topic but
remains in the non fuzzy case. The goal was to minimize
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the entropy of the histogram of the classified image. The
second term of the criteria 1s therefore the next one:

)

J, ——aZpilog(pi) ®

i=1

where p, is a prior probability of the class i.
In our case we spread the previous works to the fuzzy
case. The criterion that we mimmize 1s the next one:

J:ii(u ) a,’z(xj,c:) agpilog(pj) (10)

i=1 J=1

under the constraint:

=1 Ye[oN]

O
&

In the whole continuation we take m = 2. While
considering that u; represents the probability for the i
pixel to belong to the class j, we define the probability of
the class 1 as being:

(1)

The update of the parameters 1s gotten while
minimizing the criteria alternately then in relation to the
prototype ¢ in relation to the u;. At every iteration, we
keep the classes whose probability is superior to a certain
doorstep cnly. In the fuzzy case!'™”, only the classes of
non hopeless probability are kept.

=i (12)

1
2
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In™!, H. Frigui and R. Krishnapurams have decreased
the parameter ¢. In this manner, their algorithm finds a
partition in a number of classes that is close to the
optimum number of classes since the first iterations. We
choose the initial value of ¢ in such a way that the two
terms of the criteria J (Eq. 10) are in the same way then we
decreaze the functional like the following manner:

In this manner, once the number of optimum classes
reaches, the classification is not biased by the term of
enfropy. In the followed tests, that parameter 7 is fixed to
30 and « (0)to 2. K is the number of iterations.

FUZZY RELAXATION

A major inconvenience of the methods based on the
automatic grouping is that they completely disregard
information contained implicitly in the spatial coordinates
of the pixels: the probability that the neighboring pixels
belong to the same class is bigger than when the pixels
are distant. For it, we considered coordinated them spatial
of the pixels like a supplementary characteristic in the
vector of attributes.

We consider here the probabilistic relaxation
procedure, an extension of the labeling process by
relaxation™. The starting point of the procedure is the
gituation where, after a certain numbers of exploratory
operations, every pixel is characterized by its degrees of
adherence to a set of classes. Therefore, the degrees of
adherence of every pixel are modified once again, while
taking in consideration the degree of adherence of its
neighbors.

To the (n+ 1) iteration, the degrees of adherence are
modified like follows:

() ()
o W (ra”) »
; gy (1 +ag )

where u,is the degree of adherence of the i point to the
classj.
The correlation factor is given by :

1

cad
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where Card is the cardinal of the neighborhood and fis
the coefficient of compatibility between the ¢ class and ¢*
the class. In our case we take.

Fec)=8,
The process is repeated iteratively until its convergence.

RESULTS

We applied first the FCM algorithm on simulated data
(30000 points) generated differently. Then, the modified
algorithm is inifialized by the result gotten foll owing the
classical FCM algorithm. For a number of classes fixed to
the number of maximum classes for the classical FCM, the
number of descended classes at the end of the FCM
modified is very close to the real number of classes. This
algorithm is especially very efficient in the press where
the shapes of the classes are not regular and where the
claszsic methods as ISODATA or K-NN leaning each on a
Euclidian metric fail m ost of the time™". Indeed, in the
Fig. 1, we show three densities of data overlapped
(Fig. 1a), the classification by the modified FCM algorithm
iz shown by the Fig. 1d. Initially we have 63 prototypes
represented in the Fig. 2, after a second regulation, the
class’s number fell again to 3 only and it corresponds to
the real number of classes.

Asg in many problems of images segmentation, the
validation of the gotten results is a delicate problem and
several approaches can be considered in the goal to

Fig. 1:(a) Set of simulated data (30000 points), (b) initial
FCM clusters definition, (d) classification by
modified FCM (MFCM)
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Classification
classification by modified FCM, (c) classification
by modified FCM followed by a fuzzy relaxation
with spatial neighboring in relation to the de
talairach’s atlas

Fig 2:(a)

by classical FCM,

(b)

provide a quanfitative assessment of the quality of the
results. We will distinguish the approaches exploiting the
result of segmentations achieved by hand by experts on
real images and the approaches exploifing images of
synthesiz for which the reference iz perfectly known
mainly. In the context of the cerebral RMN images, the
recourse to experts to segment real images by hand raises
numerous difficulties. Indeed, the notion of localization of
a contour is notably imprecise and sometimes subjective,
dependent of the expert's experience. Therefore, itis very
likely that the cards of references thus produced are in
disagreement in numerous zones and that reliability and
the reproducibility of the results are difficult to value.
Besides, the complexity of the contours to detect
contributes to return such an extremely trying and
expensive tagk in time.

For the set of these reasons, the recourse to real
images seems difficult to put in work in a goal of
validation and it seems preferable to have resort to images
of syntheses, ideally the most realistic possible.

In this work, we used the available images on the
Internet site of the Monireal Neurological Institute. These
images have been constructed from real pictures and are
therefore realistic in terms of geometry of the contours.
The intensities of tissues have been simulated with the
help of physical models of the magnetic resonance
process. In order to construct a realistic phantom, the
effects of partial volumes have been taken in account.
Thus, for every voxel of the volume, a vector describes
the proportion of each of tissues that constitutes it.

The result of the classification iz finally constituted
by 125 volumes describing each one of the sought-after
tizsues (gray and white matters, cerebro-spinal liquid,
grease, muscles, skull, air, etc.). Within every volume, the
intensity of a wvoxel represents its fraction for the
corresponding tissue. The uze of synthesiz’s images to
validate our approach permits to compare the
segmentation gotten to a perfectly known reference card

141

Table 1: Rate of different tissues recognition in relation to talairach’s atlas

FCI MFCM MFCM + FR
W 0.5 0.7 0.89
GM 0.53 0.69 0.78
CaL 0.64 0.76 0.79
Others 0.44 0.57 0.69

FCM: Fuzzy C-Means, MFCM: Modified Fuzzy C-Means, FR. Fuzzy
Relaation

{Atlas of Tlairach). We could also nofice that an
initialization by consistent FCM of an optimization by
FCM modified seems very efficient for the recognition of
the three cloths (WM, GM, CSL). The regulation by
the fuzzy relaxation increases the rate of recognition
of the different present cloths in the RMN images
(Table 1).

CONCLUSION

We presented in this article a method of automatic
clagsification of the cloths of the encephalon. The
objective was to achieve this segmentation while insisting
on the automatic character with the possible information
minimum and while putting the accent on the quality of
resulted them for a possible clinical use of our algorithm.

Our approach rests on the evaluation of the
probability density by a non parametric method. A first
clagzification iz operated by the FCM algorithm, resulted
them from thiz classification depend of a good
initialization of the prototypes. To end to remedy this
problem of inifialization and to remain in the automatic
context, we developed another FCM version whose
objective function includes a second term of regulation
permitting to minimize the entropy.

To increase the efficiency of our method of
clagsification, a second comrection intervenes on the
picture herself, by another probabilistic regulation
procedure, it is about the fuzzy relaxafion that takes in
consideration, this time, the spatial relation between the
different voxels of our picture while using the probabilistic
card constructed from a referential anatomical (here one
took the referential of Talairach).

The results are especially very conclusive for the
borders enter the different cloths where the algorithms of
automatic classification as ISODATA or k-NN fail, our
algorithm gives good resulted.
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