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3-D Motion Estimation of Elastic Body from Monocular Image Sequenc
Using MRI with Entropic Constraints
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Abstract: A novel approach to 3-D motion estimation of elastic body from monocular image sequence 1s
proposed in this paper. First, with the establishment of feature point correspondence between consecutive

image frames, the affine motion model and the central projection model are presented for local elastic motion.
Then, in order to obtain the global motion parameters and overcome the ill-posed 3-D estimation problem, a
framework of Markov Random Field (MRF ) with entropic constraints is proposed. By incorporating the motion
prior constramts into the MRF, the motion smootlmess feature between local regions is reflected. This converts
the ill-posed problem into a well-posed one and guarantees the robust solution. Experimental results from a

sequence of synthetic image sequence demonstrate the feasibility of the proposed approach.
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INTRODUCTION

The estimation of elastic motion from image sequence
15 one of the most studied problems within computer
vision. Its importance stems from the wide applications it
has m virtual reality, diagnoses and
teleconferencing™. However, most of the efforts in this
computer vision area have deal with rigid objects because

ventricle

its simplicity!?. Our surrounding environment is generally
not a rigid place. Therefore, more attentions should be
paid to the problem of elastic motion estimation.

Most of the existing approaches for elastic motion
estimation used dynamic shape models to provide the
mechamism for fiting and tracking visual data. Two
typical classes of shape models, namely, parametric
models and physically-based models were used. A
mumber of parametric models, splines’™,
have been
proposed for geometric shape representation. Although
parametric models concisely capture the global shape of

such as
superquadrics’ and Fourier descriptor™

2

the objects, they are able to represent only a limited class
of objects and are inadequate for the analysis and
representation of complex, dynamic real-world objects!'.
The developed physically-based models for elastic motion
estimation mcludes snakes™, deformable superquadrics™
and finite element™. Although physically-based models
have some advantage over parametric models in modeling

the dynamically deformable objects, the robustness of

motion estimation using these models will suffer when our
knowledge of these physical parameters 1s either vague or
unknown.

In this study, a MRF approach is proposed for 3-D
elastic motion from monocular image sequence. First, the
affine motion model and the central projection model are
proposed for local elastic motion. Then, the MRF with
entropic constraints is proposed for global elastic motion
estimation. In order to cope with the 1ll-posed 3-D motion
estimation problem, the motion smoothness feature is
incorporated into the MRF, thus the robust solution can
be achieved.

MODELS FOR LOCAL ELASTIC MOTION

In this study, we choose affine motion model for local
elastic motior, because affine motion model 1s a general
non-rigid motion model and has more power in describing

local nen-rigid motion™.

Consider the jth point
Pij = (Xij, yi+.1j, Zij)T gn the.elasti.c body at time i moving
to a point Plj+L = (leﬂ, yljﬂ, leH)T at tme #+1 after a
elastic motion, the motion between time i and time i+1 can
be described as

X" fa, b oo | X | [4
Yi*|=la, b, ¢ | Y |+|d, (1)
Z% ) la, by oo | 2| |d,
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a,.,a,,a.b.b,.b..c.c.c.d, d d (2)
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is given by
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where the motion parameters that need to be estimated are
)T
At time I+1, the measurement model for a single point
i+L _ < A H _iH i HNT

Pj _(Xj > ¥j :Zj )
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where # 1s imaging function, n is image plane noise,Xijﬂ

i+ - . i+

and y;  denote the image plane coordinate, n, " and are

image plane noise components. In the case of central

projection, Eq. 3 can be reformulated as

1+1
f
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where #, and 3, are the imaging function for image
coordinate and “y”, respectively, /15 the focal length.

i+l
]

_ {%X (P;+1)+ n1x+1 (4)
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X
MOTION ESTIMATION BASED ON MRF

It should point out that, the affine motion model
defined by Eq. 1 1s only suitable for local elastic motion.
If we directly estimate the each local elastic motion, the
motion edges between different local motions will not be
smooth. This violates the motion inertia principle.
Furthermore, the 3-D motion estimation 18 an mverse
problemand most inverse problems are ill-posed. In order
to overcome these problem, some motion smoothness
prior constraints should be incorporate into the estumation
process.

MRF and regularization are two typical approaches
for encoding priors of constraints. MRF is more general
than regularization in that it can encode not only the
smoothness pricr but also priors of other constraints!™.
MRF-based models have to be chosen among the two
when the priors are due to those other than the
smoothness, e.g. in texture modeling and analysis.

In this study, the mput data consists of the
two-dimensional image coordinates of each feature point.
The correspondence of these feature points between
consecutive frames 1s assumed to be fimshed. Due to the
fact that feature pomts in an image frame are usually not
on a lattice, we cope with the estimation problem by using
a MRF with irregular sites to incorporate the motion
constramts. A site of the MRF mdexes a given
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correspondence of image feature points; A label
represents an admissible elastic motion transformation.

Let the feature pomts ina frame be given as data,
d = {p]|i € S},where S = {12, M}and M is the total
number of feature point. We can define motion parameters
on a MRF where a site is a feature point (x,y) and a label
w(x,y) represents an admissible vector of motion
parameters defined in (2).

Likelihood energy: The noise term nix+l and nij+l inEqg. 4
can be assumed to be mdependent, identically distributed
(I1D).N(0,0%)

1+

ny' =x" =R (P ~ N(0,67) 5)
ni;l :yij+1 *%Y(ij) ~N(0,0%)
The likelihood energy can then be defined by
i+1 i+14 42
AT PO W6 o)
udiwi=—=3¥ 3 b o ) 1©
= -

where M is the number of the feature points of a frame, NV
1s the total number of the image frames.

Prior energy: According to the Markov-Gibbs
equivalence!’, The joint probability can be written in
terms of a Gibbs distribution, which 1s define as

(7

L —tugw
P(w)=Q xe T

where Q Is a normalizing constant called the partiion
function, T 1s a constant called the temperature which can
be assumed to be 1 and U (w) 1s the prior energy.

In order to derive the prior energy of the MRF with
irregular site, we define the neighborhood system to
comprise nearby sites within a radius of r

1

) (8)

N, ={i"e s [dist(p, p)]" <r.i"#i

where Dist (p.p;) is the Euclidean distance between the
feature points and r 13 selected according to the size of
the object and local affine motion feature. We consider
cliques of up to order two and so the clique set C = C,uC,
C, = {{i}|e S} where is the set of single-site cliques
and C,= {{1,1"}|1’e Ni, € S} pair-site cliques. Then the prior
energy can be defined as

Ulw) =D Viw )+ 3 Y Viww,)

= 18 e N;

@)
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The single-site potentials V,(w) may be used to force
w; to stay in the admissible set of motion parameters. The
two-site potentials V,(w, w,) determine interactions
between the individual w, ’s.

Single-site potentials based on second order entropy: In
this study, because of the motion smoothness, motion
parameters a,, b, and c, are very close to 1. On the other
hand,a,a.,b,b;, ¢ and ¢, are very close to 0. We use

H (x) attains its global maximum when all g; are the same,
which corresponds to a uniform distribution with a value
of H_,. = log. On the other hand, the lowest entropy level,
H,.. = 0, 1s attained when all element g; but cne are set
to zero.

A generalization of the above standard entropy has
been defined as!'™

i

H,(x)=-Y g logqg, with q =

second order entropy (Ent-2) to reflect this characteristic. < u (11)
The entropy of a discrete random variable 1s g P;
- [12]
defined by and
p=A%% (12)
1 . X1
H(x) =~ Y q;logq, with g, =— (10) o _
i=1 x where a = 0,1,2... and » is a discrete difference operator. It
1 . .
=l has been shown that, for an appropriate choice of the
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Fig. 1: The 1st, 3rd, 5thy, 8th frames of a synthetic image sequence
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Tablel : Estimated motion parameters compared with given ones

Moation

parameters a, a a3 b, b b, [9) c [ d, d. ds
W, 0.90000 0.10000  0.10000 0.10000 0.80000  0.10000 0.10000 0.10000 1.0000 0.0200 0.0200 0.0100
0 0 0 0 0 0 0 0 0 0 0 0
W 0.9002 0.1000 0.1000 0.1000 0.8002 0.1000 0.1000 0.1000 1.0003 0.0203 0.0210 0.0104
3 3 2 3 1 3 3 3 1 & 0
W, 0.8000 0.2000 0.2000 - 0.9000 - 0.1000 - 0.9000 0.0200 0.02000 0.0100
0 0 0 0.10000 0 0.10000 0 0.10000 0 0 0 0
0 0 0
Wy 0.8001 0.2000 0.2000 - 0.9001 - 0.1000 - 0.9001 0.0203 0.0196 0.0093
1 3 2 0.0900 1 0.1000 1 0.1001 2 1 5 2
1 1 1
W 0.8500 0.1500 0.1500 0.0000 0.8500 0.0000 0.0000 0.0000 0.9500 0.0200 0.0200 0.0100
0 0 0 0 0 0 0 0 0 0 0
Wy 0.8541 0.1507 0.1507 - 0.8941 - 0.0205 0.0100 0.9545 0.0210 0.0231 0.0093
5 7 6 0.9789 5 0.9659 Q0 1 5 Q0 1 1
5 0

differential operator, an over-constrained approximation
will still retan some of the mformation contamed in
the data.

Let x,,8,,%,.b,, X; = ¢, X, t0 X; equal to a,, a,, by, b; ¢
and ¢,, respectively. Assuming that x_;,<x, <x,..1= 1,2,..9
and setting a = 2, we define the single-site potentials
based on Ent-2 as

Vy(w) =—H,(x) (13)

here, the elements of vector p are given by

D= X 2% F X 2K ) (14
+0i=2,3,---,8

where is a small positive constant, it can be set to
be 107"

Two-site potentials: In order to reflect the motion
smoothness between neighboring feature points, we
define the two-site potentials as

V,(w,w,) = min(“Wi “wlf a) (15)

where a > 01is a threshold, it is used to stop V, (w; w,.)’s
increasing as | w; w,| becomes very large.

Minimization of posterior energy: When the likelihood
energy and the prior energy U(d|w)are available,
the posterior energy follows immediately as
U (d|w) = U (w)+U (d|w) The optimal solution of motion
parameters is

w*:argngnU(w\d) (16)

In order to find the optimal solution of motion
parameters, the posterior energy must be minimized. There
exist methods to solve such optimization problems. One

of the most popular methods 1s the Simulated Annealing
(SA)™. Tt is a global optimization methed. Instead of
performing gradient descent, a random search method 1s
used to generate the next configuration. The random
search 13 controlled by a sequence of decreasing
temperatureand this enables the algorithm to escape from
local minima into the global minimum.

Experimental results:This experiment involves a
synthetic image sequence generated by using a given set
of motion parameters. The sequence consists of 8 image
framesand each frame contains 128x128 pixels and 26
feature points. Figure 1 shows the 17, 3, 5* and 8™ frames
of the sequence. There are 26 feature points in each
frame. The process of feature pomt correspondence is
assumed to be fimshed beforehand. Three groups of
feature points moving from frame to frame with three
different types of local motion are marked as “x”, “0” and
“+7, respectively. We use our approach to estimate the 3-
D elastic motion parameters. The motion estimation
results compared with the given parameters are shown in
Table 1, where,w,, w, w, are the given motion parameters
for feature points “>”, “+” and “0”, respectively, w; is the
corresponding estimation results for w,.

It 1s obvious that the estimation robustness for
pomt group marked as “x” and “+” 1s good. The
estimation error of the feature pomnts “o” 1s relatively
big, this 13 due to the fact that this pomt group contains
only 3 feature pomts, the robustness of estimation is
affected to some extend.

CONCLUSION

We have developed an approach to 3-D elastic
motion estimation from monocular image sequence. By
using the MRF framework with entropic constraints, the

motion prior constraints 15 incorporated mto the
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estimation process, this guarantees robust solutions.
Experimental results from a synthetic image sequence
demonstrate the feasibility of the proposed approach. In
addition, this method may offer significant improvement
in cloud motion analysis, left ventricle motion analysisand
other applications in computer vision.

However, our approach 1s computationally costly,
thus 13 the major problem m real applications. We will cope
with this problem m our future research
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