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Abstract: Underwater ROV is an important in underwater
industries as well as safety purpose. It can dive deeper
than human and can replace human in hazard underwater
environment. ROV depth control is difficult due to
hydrodynamic of the ROV itself and underwater
environment. Overshoot in the depth control may cause
damage to the ROV and its investigation location. This
paper presenting a new tuning approach of SIFLC with
GDA and PSO implementation for ROV depth control.
The ROV was modelled using system identification to
simulate the depth system. PID controller was applied to
the model as a basic controller. SIFLC was then
implemented in three tuning approach which are heuristic,
GDA and PSO. The output transient was simulated using
MATLAB Simulink and the percent overshoot (OS), time
rise (Tr) and settling time (Ts) of the systems without and
with controllers were compared and analysed. The result
shows that SIFLC GDA output has the best transient
result at 0.1021% (OS), 0.7992s (Tr) and 0.9790s (Ts).

INTRODUCTION

In underwater engineering field, ROV plays important
role for underwater observation, investigation and
inspection[1-3]. Especially in oil and gas industry, ROV is
used to do underwater pipe inspection as well as repairing
job. ROV normally suffered from problems include pose
recovery or station keeping, under actuated condition,
coupling issues and communication technique[4]. This
research paper was focusing on the ROV depth control or
station keeping. Station keeping at certain depth is very
important for underwater exploration and inspection
mention in paper[5-7]. Controlling ROV is difficult because
of unexpected and unpredictable[4, 8] underwater
environment. This is due to the nonlinear hydrodynamics

effect, coupled characters of plant equations, lack of
precise models of underwater vehicle hydrodynamics and
uncertainty parameters[9, 10] as well as the presence of
environmental disturbances[1, 11-14]. Controller design,
based on  simple models of underwater vehicle mass and
drag, generally yields unacceptable performances[15].
Linear (conventional) controller is unable to adequately
control the UUV satisfactorily[16]. Even for a one axis
motion for example vertical motion or heave motion,
consistent performance for a desirable range is required.
Overshoot in the system cannot be considered as it can
harm the ROV or its inspection location[14, 17-20]. It is best
to have as least as possible overshoot in the ROV system.
There many controllers designed by researcher to cater
this problem. There are Proportional, Integral and
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Derivative (PID) based controller and artificial based
controller. PID is a simple control technique that has been
universally used because of the simplicity of
implementation in real time system.  Even for work class
ROV, PID is used as its controller.  However, the
limitation is that it cannot dynamically compensate for un-
modelled vehicle’s hydrodynamics forces or unknown
disturbances. There are also existence of parameter
configuration contradictory between different control
performance such as between rise time and overshoot. 
Paper[21-25] have implement successfully implement PID
controller for tracking purpose for Unmanned Underwater
Vehicle (UUV) while paper[17, 26] successfully implement
to ROV.  Normally, PID controller was used as basic
controller to be compared with other complex controller
such as paper[27, 28, 6]. The PID was hard to be tuned to
cope with non-linear nature of underwater environment.
The PID produce high overshoot and high steady state
error. PID controller was not able to cope with underwater
wavy environment.

Due to limitation of PID, artificial intelligent based
controller such as Fuzzy Logic Controller (FLC) and
Artificial Neural Network (ANN) that had been
introduced to control ROV. ANN was used by paper[29] to
control the depth of ROV. ANN was used to predict the
performance of the ROV depth system based on previous
input and minimize the cost function. Then, the best input
is suggested. The ANN result shows superior result
compare to other controllers that were experimented.
Paper[30] and paper[31] also implement ANN based for
ROV system. Paper[30] used ANN to tuned PID and adapt
with the depth changing of ROV. Difference from
Paper[30], paper[31] implemented Radial Basis Function
Neural Network (RBFNN) for trajectory tracking for
Autonomous Underwater Vehicle (AUV). Both shows
good result. The downside of ANN was long
computational   time   that   may   lead   to  lagging
problem.

Another artificial intelligent based controller for ROV
system is the Fuzzy Logic Controller (FLC).  In[21] and[23]

the authors successfully applied FLC to ROV while in[32]

FLC was successfully applied to AUV. The FLC
controller can cope with not well-known mathematical
model system. Implementation of FLC ease the need of
precise and complex hydrodynamic modelling of the
vehicle.  In paper[33], FLC was successfully used to tuned
PID controller for underwater vehicle. Even with the
adaptability advantage, FLC poses its own level of
complexity.

Simplified Single Input Fuzzy Logic Controller
(SIFLC) is proposed to control the depth of ROV.
Paper[34, 35] revealed that SIFLC has excellent performance
and it exactly resembles conventional FLC transient
response.  SIFLC reduce the input of conventional FLC
into Single Input Single Output (SISO) system. 

Normally, trial an error (heuristic) method was used to
find the optimum parameter. Consequently, it takes more
time execution to find the optimum parameters.

This study presenting a new tuning approach of
SIFLC with Gradient Descent Algorithm (GDA) and
Particle Swarm Optimization (PSO) implementation for
ROV depth control. The ROV was modelled using system
identification to simulate the depth system. PID controller
was applied to the model as a basic controller. SIFLC was
then implemented in three tuning approach which are try
and error (heuristic), GDA and PSO. The output transient
was simulated using MATLAB Simulink and the percent
overshoot (OS), time rise (Tr) and settling time (Ts) of the
systems without and with controllers were compared and
analysed. In terms of depth control, the overshoot (%OS)
may damage the ROV or its investigation place[14, 18-20, 17].
The time rise (Tr) shows the time taken to get to desired
point while the settling time is the time ROV stabilize at
steady state.

MATERIALS AND METHODS

System modelling: In this study, the ROV was modelled
using System Identification (SI) method. For system
identification, the heave or vertical movement of ROV is
being tested experimentally. Real time input output
experimental data was gathered. The 5 steps need to be
considered  in  implementing  system  identification.
Figure 1 shows the 5 steps for SI approach. The steps are
observation and data gathering, model structure selection,
model estimation, model validation and model
application[36].

Start with system observation and data gathering,
ROV system and the data is gathered. Two sets of data are
needed: training and validation data. In this research
project, multi-sine signal was used to get the experimental
data for training and validation. The input and output data
were recorded and MATLAB is used to get the transfer
function of the system. two set of data needed where (1)
set for training and another for validation. The input given
to ROV system can be pulse, steps, Random Binary
Sequence (RBS), Pseudo Random Binary (PRBS),
m-level Pseudo Random (m-PRS) and multi-sine[36]. In
this project, multi-sine input was given to the system. In
the MATLAB system, the Instrument Variable (IV)
approach was selected. Next, the selected model structure
is implemented for model estimation and model validation
to generate a ROV Model. Lastly, the model generated is
used to design ROV controller. To gain an ideal result, the
experiment was conducted in a controlled environment.
Disturbance was not considered. Instrument variable
approach: IV combined with 3 poles and 2 zeros transfer
function was selected. The best fitting match was 96.43%
is acceptable because within 80-99% best fits. The
transfer function generated shown as Eq. 1 below:
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Fig. 1:System identification approach for modelling of
ROV

Fig. 2: Transient response of the ROV Model

Fig. 3: MATLAB Simulink close loop block diagram

(1)
2

3 2
0.02332s +0.04058s+0.01126H(S) =
s +0.7114s +0.1861s+0.01398

The generated output transient response was shown in
Fig. 2. The output result has no overshoot, 18.18s of Tr,
33.21s Ts and 0.1947 steady state error (sse). The result
is not good as it has great steady state error which is
19.47% of the input given. Even though it does not have
any overshoot, the system takes a bit long time to rise and
stTr and Ts value.

This generated modelled is then simulated in
MATLAB Simulink as closed loop system shown in the
block diagram in Fig. 3.

From Fig. 4, the close loop has faster Tr (9.07s) and
Ts (14.76s) compare to open loop result but high steady 

Fig. 4: Open loop and close loop transient output
comparison

Fig. 5: PID controller block diagram

state error up to 55.55% from the input given to the
system. From the output result, controller need to be
applied to get better output response.

Proposed controller design: In this study PID controller
was designed using auto tuning provided by MATLAB
Simulink. The SIFLC controller was designed and tuned
using heuristic, GDA and PSO. PID was used as a basic
controller to be compare with SIFLC controller designed.

PID controller: As mentioned previously, PID controller
is the basic controller applied to ROV system. The P, I,
and D blocks were put in parallel in front of the plan to
control the system.  The P counter the direct error; the I
indicate the total errors in the system while D shows how
fast to the errors happen. The P controller will make the
response faster but intend to produce overshoot. The I
controller tend to eliminate SSE while the D controller
decrease overshoot. The PID controller block diagram is
shown as in Fig. 5. The PID was tuned using automatic
tuning in MATLAB Simulink[37]. 

SIFLC controller: SIFLC controller is designed based on
conventional  FLC  designed.  The  normal  FLC  table;
Table 1 is manipulated using Sign Distance Method
(SDM) which reduced the rules table to a
one-dimensional array[38, 39]. From table, it can be seen
there is consistent pattern in the decision making of the
FLC output.

From Table 1, 2 diagonal lines were created which
named as A and B. ‘d’is distance between A and B given
by Eq. 2. Figure 6 shows the derivation of d which is
distance between point, Q and point, P:
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Start

Increase and decrease the
value of (  ) linearly

Good

Record the (  ) values

End

Yeas

No

Table 1: 7 X 7 FLC table
Err vs du/dt or 1/s PL PM PS Z NS NM NL
NL Z NS NM NL NL NL NL
NM PS Z NS NM NL NL NL
NS PM PS Z NS NM NL NL
Z PL PM PS Z NS NM NL
PS PL PL PM PS Z NS NM
PM PL PL PL PM PS Z NS
PL PL PL PL PL PM PS Z

Table 2: Reduced FLC table using SDM
d LNL LNM LNS LZ LPS LPM LPL
Output NL NM NS Z PS PM PL

Fig. 6: Derivation  of  d,  distance  between  point  Q  and
P[39]

(2)e e
2 2 2

w+Z λ Z λwd = = +
1+λ 1+λ 1+λ

(3)e+λe = 0

(4)e= -
e

∴λ


The  conventional  FLC  table  is  now  reduced  to
Table 2 where diagonal line was represent by LNL, LNM,
LNS, LZ, LPS, LPM andLPL while NL, NM, NS, Z, PS,
PM and PL represent the output of corresponding
diagonal lines.

This input output of SIFLC can be replaced by lookup
table. SIFLC was then tuned using proposed lambda (λ)
tuning method. The value of (λ) is varies up and down to
get the best output result. The (λ) linked to the FLC by the
input of the FLC. The range of error and integral error
was plotted in a graph shown in Fig. 7.

SIFLC Heuristic tuning method: The gradient of the
line is lambda (λ). The varying of (λ) SIFLC result was
then analysed and the best result was selected. The
varying of lambda (λ) up and down experimentally is
called heuristic method. Figure 8 shows the flow diagram
of the heuristic tuning process.

As shown in Fig. 8, the varying of (λ) value or the
gradient was done until the best result generated. It takes
much time and experience of controller designer is tested. 

Fig. 7: Plotted graph of input 2 versus input 1 FLC

Fig. 8: Flow diagram for SIFLC heuristic tuning

SIFLC GDA tuning method: GDA is an algorithm that
iteratively run until it manages to get the minimum of a
function. The GDA is used to replace the heuristic lambda
(λ)  tuning for SIFLC. The objective function was from
the predicted output compared to input given. It is a
simple mathematical method that is based on
differentiation equation where the initial point output was 

46

  

60 
 

40 
 

20 
 
 

0 
 

-20 
 

-40 
 

-60 

In
pu

t 2
(1

/s
) 

Input 1 (ERR) 

m  = λ 

Main diagonal line, Lz P(e1, e’1) 

B 
LPS 

A e+λe = O 

Q(e0, e’0) 

d 



Int. J. Elec. Power Eng., 15 (5): 43-51, 2021

Choose initial parameter

Optimal nishF i

Search direction

Determine step size

Generate new parameter

Yes

No

Fig. 9: Flow diagram of gradient descent algorithm

move towards the targeted output by calculating the
errors. Two important parameters need to be considered
which are direction of movement and the size of step need
to be used. The direction of movement defines by the
tangential of the initial point. The sharpness of the tangent
line also shows how near the point to the minimum point
and how to decide the learning rate that should be
selected. Figure 9 shows the flow diagram of gradient
descent algorithm[40]. From Fig. 9, the GDA will keep on
running until the optimum condition is generated or the
iteration reach. 

SIFLC PSO tuning method: PSO was proposed by
Kennedy and Eberhart[41] in 1995.  It is inspired by
behaviours of fish schooling and bird flocking to search
for foodstuff at a certain speed and position.  The likeness
is  recognized  between  a  particle  and  a  swarm
element[34, 42]. The particle movement is categorized by
two factors: its current position x and velocity v,
respectively.  It has been useful effectively to a variety of
optimization problems[43-45]. The particle swarm
optimization algorithm is analysed by using standard
results from the dynamic theory[46]. The PSO algorithm
begins by initializing the swarm randomly in the search
space.  Two consecutive iterations, t and t+1 correspond
to the position x of each particle changed during the
iterations by adding a new velocity v.  The new velocity
is estimated by summing an increment to the previous
velocity value. The increment is a function of two
components representing the cognitive and the social
knowledge[47]. The cognitive knowledge of each particle
is included by evaluating the difference between the
current position x and its best position, PBEST. The social
knowledge of each particle is incorporated through the
difference between its current position x and the best

swarm global position achieved, GBEST.  The cognitive
and social knowledge factors are multiplied by randomly
uniform generated terms n1 and n2, respectively[47].
Equation 5 shows the position vector while Eq. 6 shows
the velocity vector. P in equation is PBEST while the G is
GBEST:

(5)t 1 t t 1
i i iX X V+ += +
  

(6)( ) ( )t 1 t t t t t
i i 1 1 i i 2 2 iV wV c r P X c r G X+ = + − + −
 

RESULTS AND DISCUSSION

All controllers designed was combined into one block
diagram to compare the result. There are 6 signals
analysed which are step input, open loop, close loop, PID,
SIFLC heuristic, SIFLC GDA and SIFLC PSO. Figure 10
shows the block diagram for the 6 signals investigated. 

From block diagram, Scope 1 shows the 6 signals
while Scope 2 used to compare between PSO result
equation based (SIFLC PSO) and lookup table Simulink
(SIFLC PSO1). This scope output shows identical result
(Fig. 11). Figure 12 shows the output result for Scope 1.

In Fig. 12, SIFLC GDA shows the most identical
result to the step input given. It is then followed by SIFLC
heuristic. The SIFLC PSO shows improvement in the Tr
but a bit steady state error. The PID shows a bit overshoot
but no steady state error. The output result is tabulated in
Table 3.

From the bar chart in Fig. 13, it is obvious that SIFLC
GDA shows the best and balance result as it manages to
get the lowest errors at all parameters. For Tr (s), SIFLC
GDA shows 0.7992s result. Next to it are SIFLC PSO
(2.366s), PID (7.066s) and SIFLC Heuristic (7.2592s).
Heuristic approach and PID approach have almost similar
value  for  Tr  (s)  at  7s.  For  Ts(s),  next to SIFLC GDA 
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Table 3: Output result of the controller’s implementation to ROV system
Variables PID SIFLC Heuristic SIFLC GDA SIFLC PSO
Tr (s) 7.0665 7.2529 0.7992 2.3686
Ts (s) 24.6687 10.9736 0.9790 12.2348
%OS 7.3613 0.7988 0.1021 16.2368

Fig. 10: Block diagram for the 6 signals investigated

Fig. 11: Comparison result between PSO result using command windows (SIFLC PSO) and Simulink (SIFLC PSO1)

(0.9790s) are SIFLC Heuristic (10.973s), SIFLC PSO
(12.2348s) and PID (24.6687s). For the last parameter
(overshoot), SIFLC GDA shows the best result which is
0.1021%. It is then followed by SIFLC heuristic

(0.7988%), PID (7.3613%) and SIFLC PSO (16.2368%).
Figure 14 shows the comparison of SIFLC GDA with step
signal. The SIFLC GDA looks nearly identical to the
given step input. 
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Fig. 12: The output result of Scope 1

Fig. 13: Bar chart of the performance parameters

Fig. 14: Comparison of SIFLC GDA with step signal

CONCLUSION

Two controllers with difference tuning had been
applied to ROV depth system. New tuning approach of
SIFLC controller based on lambda (λ) is proposed and
compare with basic PID controller. The SIFLC GDA
shows the best and balance result as it has the lowest
errors in all parameters investigated. The SIFLC PSO
suffer from high overshoot and a bit steady state error.
The basic PID controller can be excepted but suffered
from a bit overshoot and long settling time, Ts (s). For
SIFLC Heuristic, the result can also be excepted as it has
better result compare to PID controller in Ts and %OS.
The problem with SIFLC heuristic is experience

controller designer is needed and it takes much time to
tune it. The SIFLC GDA get good result because it used
specific tuning of objective function based on all
parameters. SIFLC PSO get higher error compare to
SIFLC GDA because the objective functioned used was
absolute mean error value. From all results, it is proven
that SIFLC lambda (λ) tuning approach successfully
produced good output result. With the implementation of
optimization approach such as GDA and PSO, the better
output result can be obtained. The objective function
selected in running the optimization approach also plays
important roles in getting a good result. For future
implementation, varieties of objective functions
implementation can be studied and proposed to the
system. 
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