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Abstract: Arc interruption of High Voltage Direct
Current (HVDC) Circuit Breakers (CBs) is one of the
main challenging factors for using HVDC grids. To
evaluate the arc interrupting capability in HVDC circuit
breakers, black box arc models are used to represent the
non-linear arc conductance depending on Cassie and
Mayrdynamic arc equations. A real line represents a part
of 500 kV electrical connection systems between Egypt
and Kingdom Saudi Arabia is simulated to be a faulty
load. It is found that the arcing voltage and thearcing time
of the HVDC CB can be reduced by decreasing the value
of arcing time constant( ) and increasing the value of
power cooling coefficient (P) It is also deduced that the
arcing time is reduced by the increase of the commutation
capacitance value (C) and decreasing the commutation
inductance (L) value and vice versa. Moreover, it is
concluded that the arcing voltage of HVDC circuit
Breaker is greatly affected if more than one pole
(cascaded series or parallel two or three poles) are used
for single circuit breaker and this would be more effective
and better for commercial reasons than using cascaded
series or parallel two or three circuit breakers.

INTRODUCTION

In September, 2020, High Voltage Direct Current
(HVDC) Circuit Breakers (CBs) play a vital role in the
growth of HVDC power systems which can widely help
in replacing fossil fuels with renewable energy sources[1-8].
The main usage of HVDC system is to connect two AC
networks with different frequencies and to transmit large
amounts of power via. long distances[9-16].

The key challenge that faces the expansion of HVDC
CBs is the absence of natural current zero crossing. As a
matter of fact, in AC interrupting processes the current
decrease to zero naturally. On the other hand, in DC
interrupting processes the current needs to be forced to

zero. Therefore, to form a HVDC CB, it is necessary to
install additional components on conventional AC circuit
breaker to form artificial current zero crossing[16-19]. A lot
of works have been directed to create artificial zero
crossing in the DC current by using active and passive
commutation types[19, 19-21].

Arc is considered the main aspect of the interruption
process. Many electric arc models are developed for
describing arc behavior[16, 21-24]. Conventional arc models
are classified into physical arc models and black box arc
models. The physical arc model describes the entire arc
behavior during the interruption. Therefore, it can be used
to investigate the arc behavior in details but it is very
complicated to be applied. Otherwise, the black box arc
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model can be considered the proper method to describe
the arc behavior[16, 25-28]. Black box models represent the
non-linear arc conductance variation with time[16, 21-25].
The choice of black box model equations to determine
their parameters is essential, hence, it requires making
certain assumptions about the arc behavior[16, 17-20].

As the main purpose of the black box arc model is to
describe the interaction between the arc and the electrical
circuit during the current interruption process, cassie and
Mayr dynamic arc equations can be considered the most
representative arc models[16, 17-19].

For applying Mayr’s model to interrupt DC current,
a resonance (LC) circuit is coupled in parallel with the
circuit breaker to generate self-excited oscillatory current
superimposed on the DC current forming zero current
crossing[16, 17, 22-35]. However, when applying Cassie’s
model, there is no need to use a parallel resonance circuit
with the breaker, it is only required to make the steady
state arc voltage over supply voltage to decrease the
current quickly to zero[16, 21]. Besides, a circuit element is
used to control the Rate of Rise of Recovery Voltage
(RRRV)  and  an  absorber  element  to  absorb  the
energy stored in the system inductance after arc
interruption.   These   two   circuit   elements   are   used 
with   the   arc   simulation   by   both   Mayr   and  Cassie 
models[16, 19, 33].

This study makes a comparison between multi-break
circuit breaker and cascaded series circuit breakers like:
multi-break consisting of 2 contacts in comparison with 2
series circuit breakers and multi-break consisting of 3
contacts in comparison with 3 series circuit breakers DC
fault test bed modeling is carried out by
MATLAB/Simulink  software  to  evaluate  the  capability
to protect the HVDC overhead transmission line,
connecting Badr substation in Egypt and Elnabaq
switching station. Such line represents a part of 500 kV
electrical connection systems between Egypt and
Kingdom Saudi Arabia.

MATERIALS AND METHODS

Modeling of HVDC circuit breaker: Figure 1 shows the
puffer  type   of   SF6   gas   CB   structure   including  the

simulated arc, rated voltage of 525 kV, lightning impulse
withstand voltage of 1175 kV, rated normal current of
2000 A, rated short time current (1s) of 40 kA, rated peak
withstand current of 100 kA and rated short circuit
making current of 100 kA.

As it is known, the HVDC arc can be considered as
a nonlinear phenomenon which occurs due to two factors.
The first one is the high short circuit current that
generates heat leading to the circuit breaker contacts and
quenching medium temperatures increase, consequently 
a sufficient quantity of electrons are emitted. In addition,
at  the  arc  initiation  when  the  value  of  the  voltage
between the two contacts exceeds the ionization voltage
of the inter-electrode gas, the gas may be sufficiently
ionized.

SF6 gas has electro-negativity characteristics which
means that the SF6 gas takes the free electrons far away
from the field as a result of this action; the SF6 gas
becomes electrically unstable and leaves the electrons
quickly. Consequently, the electrons move in a random
motion where the only way to reignite the arc is to
achieve an oriented motion of the free electrons. Black
box arc models are applied using the models of Mayr and
Cassie. Mayr’s equation can be deduced from the energy
balance equation as given in Eq. 1:

(1)dQ/dt (H)-P(Q)

where, P(H) is the heat generated with the assumption that
the cooling power P(Q) and the arc conductance g(Q) are
arbitrary functions of Q. The general form of the dynamic
arc equation of current i is represented as follows:

(2)  2dg/dt  (1/ dQ/dg *(i /g-p)

By further assumption of Q = Q0. ln (g/G0) where  
Q0 and G0 are constants describing the arc, the thermal
time constant is defined by = Q0/p. Thus, Mayr dynamic
arc equation can be presented as given in Eq. 3:

(3)2(P* /g)*dg/dt = i /g-p

Fig. 1: The puffer type of SF6 circuit breaker structure
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It is worth mentioning that by eliminating the
hypothesis has the time constant   and cooling power p are
constants, it leads to a generalized form of Mayr’s
equation as given below in Eq. 4 where u is the arc
voltage:

(4)2 2(1/g)*dg/dt = 1/ (u /Uc -1)

Meanwhile, cassie defines the arc behavior with the
following hypothesis and assumptions: the arc column has
a cylindrical shape filled with highly ionized gas and free
electrons, arc cylindrical column has uniform temperature
and current density but its diameter is altered in time and
accommodate the change in current, arc voltage is
considered constant during the arc process and finally, the
power dissipation is considered proportional to the
column cross sectional area. With these assumptions, a
linear relation between arc conductance and energy
storage capacity of the arc is presented by the following
Eq. 5 which represents the last form of Cassie’s equation:

(5)   2 2 1/g *dg/dt  1 / u /Uc -1

Where:
= The arc time constant

p = The arc power loss coefficient
g = The arc conductance (i/u)
u = The arc voltage
Uc = The steady state arc voltage

After simulating the non-linear arc conductance using
black box arc models, it should be noted that there is a
need to use additional circuit elements that connected
with HVDC CB to interrupt the electrical arc[16].

RESULTS AND DISCUSSION

Figure 2-9 illustrate the results of using two series
cascaded circuit breakers. It is noticed that when the DC
current reaches toapproximately 20 kA, the fault is
detected and the DC circuit breaker successfully starts to
open at 0.01 sec and the electrical arc isgenerated as it is
observed in Fig. 4 and 5.

It is also noticed that from Fig. 5 at the point of
0.01118 sec, the HVDC CB completely interrupts the arc
current andextinguishes the arc. As the max peak of
voltage value across CB in thissystem is 385 kV as shown
in Fig. 4, it is noticed from Fig. 6 and 7 that the fault is
cleared after the energyabsorber element has absorbed the
energy stored in thesystem inductance andthe current
ceases to almost zero. Hence, we can notice that
decreasing the value of inductance and increasing the
value of capacitance helped in reducing the value of both
arcing time and voltage. Moreover, using two series
cascaded circuit breakers has decreased the voltage on
each one of them. Also, the arcing time in this
modification model has decreased. Note that the max peak
of voltage across the two CBs is 770 KV. Figure 8 and 9
illustrate the results of changing the values of   and P
(Table 1).

Fig. 2: The model of two series circuit breakers of Mayr model
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Fig. 3: The subsystem of each circuit breaker of the two series circuit breakers

Fig. 4: The voltage across each circuit breaker

Figure 10-18 illustrate the results of using two series
cascaded poles for one circuit breaker in the same tested
Mayr model of circuit breaker to decrease the arcing time
and voltage. It is noticed that when the DC current
reaches to approximately 20 kA, the fault is detected and
the  DC  circuit  breaker  successfully  starts  to  open  at 

Fig. 5: The current through each circuit breaker

0.01 sec and the electrical arc is generated as it is
observed in Fig. 12-14. It is also noticed that from Fig. 14
at the point of 0.01085 sec, the HVDC CB completely
interrupts the arc current and extinguishes the arc. As the
max peak of voltage value across CB in this system is
673.5 kV as shown in Fig. 12, it is noticed from Fig. 15
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Table 1: Simulation parameters of the models of Mayr after using two
series circuit breakers

Model Parameters Default values Tested values
Mayr P (MW) 100 65, 85, 115

   (μ sec) 10 5, 15, 20
L1-L4 (mH) 0.25 0.25
C1-C4 (μF) 20 20
Rp (Ω) 75 75
Cp (μF) 0.1 0.1

Fig. 6: The current through commutation circuit for each
circuit breaker

Fig. 7: The current through surge arrester for each circuit
breaker

and 16 that the fault is cleared after the energy absorber
element has absorbed the energy stored in the system
inductance and the current ceases to almost zero. Hence,
we can notice that decreasing the value of inductance and
increasing the value of capacitance helped in reducing the
value of both arcing time and voltage. Moreover, using
two series cascaded poles for one circuit breakers has
decreased the voltage on each pole of the CB as shown in 

Table 2: Simulation parameters of the models of Mayr after using two
series poles of each circuit breaker

Model Parameters Default values Tested values
Mayr P (MW) 100 65, 85, 115

    (µs) 10 5, 15, 20
L1, L2 (mH) 0.25 0.25
C1, C2(µF) 20 20
Rp (Ω) 75 75
Cp (µF) 0.1 0.1
R1, R2 (Ω) 5 5
C5, C4 (pF) 100 100

Fig. 8: The current through circuit breaker with various
values of 

Fig. 9: The current through circuit breaker with various
values of P

Fig. 13 and the total voltage on the CB. Also, the arcing
time in this modification model is smaller than the past
one (Table 2). Figure 17 and 18 illustrate the results of
changing the values of P and    .

Figure 19-26 illustrate the results of using three series
cascaded circuit breakers in the same tested Mayr model
of circuit breaker to decrease the arcing time and voltage.
It is noticed that when the DC current reaches to
approximately 20 kA, the fault is detected and the DC
circuit breaker successfully starts to open at 0.01 sec and 
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Fig. 10: The main model of circuit breaker consists of two poles

Fig. 11: The subsystem of the circuit breaker

the electrical arc is generated as it is observed in Fig. 21
and 22. It is also noticed that from Fig. 22 at the point of
0.01141 sec, the HVDC CB completely interrupts the arc
current and extinguishes the arc. As the max peak of
voltage value across CB in this system is 300 kV as
shown in Fig. 21, it is noticed from Fig. 23 and 24 that the
fault is cleared after the energy absorber element has
absorbed  the  energy  stored  in  the  system  inductance
and the current ceases to almost zero. Hence, we can

notice that decreasing the value of inductance and
increasing the  value of capacitance helped in reducing the
value of both arcing time and voltage. Moreover, using
two series cascaded circuit breakers has increased the
total voltage on the three CBs but has decreased the
voltage on each one of them than the regular one. Also,
the arcing time in this modification model is greater than
the past one (Table 3). Figure 25 and 26 illustrate the
results of changing the values of P and   .
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Fig. 12: The total voltage across the circuit breaker

Fig. 13: The voltage across each pole of the circuit
breaker

Table 3: Simulation parameters of the models of Mayr after using three
series circuit breakers

Model Parameters Default values Tested values
Mayr P (MW) 100 65, 85, 115

    (µs) 10 5, 15, 20
L1-L4 (mH) 0.25 0.25
C1-C4 (µF) 20 20
Rp (Ω) 75 75
Cp (µF) 0.1 0.1

Figure 27-35 illustrate the results of using three series
cascaded poles for one circuit breaker in the same tested
Mayr model of circuit breaker to decrease the arcing time
and  voltage.  It  is  noticed  that  when  the  DC  current 

Fig. 14: The current through the circuit breaker

Fig. 15: The current through the commutation circuit

reaches to approximately 20 kA, the fault is detected and
the  DC  circuit  breaker  successfully  starts  to  open  at
0.01 sec and the electrical arc is generated as it is
observed in Fig. 29 and 31 (Table 4).

It is also noticed that from Fig. 31 at the point of
0.01228 sec, the HVDC CB completely interrupts the arc
current and extinguishes the arc. As the max peak of
voltage value across CB in this system is 654 kV as
shown in Fig. 29, it is noticed from Fig. 32 and 33 that the
fault is cleared after the energy absorber element has
absorbed the energy stored in the system inductance and
the current ceases to almost zero. Hence, we can notice
that decreasing the value of inductance and increasing the
value of capacitance helped in reducing the value of both 
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Fig. 16: The current through the surge arrester

Fig. 17: The current through circuit breaker with various values of

arcing time and voltage. Moreover, using three series
cascaded poles for one circuit breakers has decreased the

voltage on each pole of the CB as shown in Fig. 30 and 
the total voltage on the CB. Also, the arcing time in this 
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Fig. 18: The current through circuit breaker with various values of P

Fig. 19: The model of three series circuit breakers of Mayr model
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Fig. 20: The subsystem of each circuit breaker of the three series circuit breakers

Fig. 21: The voltage across each circuit breaker Fig. 22: The current through each circuit breaker
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Fig. 23: The current through the commutation circuit in each circuit breaker

Fig. 24: The current through surge arrester in each circuit breaker
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Fig. 25: The current through circuit breaker with various values of 

Fig. 26: The current through circuit breaker with various values of P
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Fig. 27: The main model of circuit breaker consists of three poles

Fig. 28: The subsystem of the circuit breaker
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Fig. 29: The total voltage across the circuit breaker

Fig. 30: The voltage across each pole of the circuit breaker
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Fig. 31: The current through the circuit breaker

Fig. 32: The current through the commutation circuit

Fig. 33: The current through surge arrester

Fig. 34: The current through circuit breaker with various
values of

Fig. 35: The current through circuit breaker with various
values of P

Table 4: Simulation parameters of the models of Mayr after using three
series poles of each circuit breaker

Model Parameters Default values Tested values
Mayr P (MW) 100 65, 85, 115

   (µs) 10 5, 15, 20
L1 (mH) 0.25 0.25
C1(µF) 20 20
Rp (Ω) 75 75
Cp (µF) 0.1 0.1
R1, R2 (Ω) 5 5
C5, C4 (pF) 100 100
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modification model is greater than the past one. Note that 
the  max  peak  of  voltage  across  the  CB  is  654  kV.
Figure 34 and 35 illustrate the results of changing the
values of P and   .

CONCLUSION

In this study, black box arc model is used to represent
the non-linear arc conductance depending on Mayr model.
Mayr’s model has proved more flexibility to study the
effect of different controlled and uncontrolled parameters
on the arcing time of HVDC circuit breakers. It is found
that the arcing time is reduced by increasing the value of
cooling power coefficient, decreasing the arcing time
constant, increasing the value of commutation capacitance
and decreasing the value of commutation inductance[16]. It
is also concluded that using multi-break circuit breaker is
better than using number of cascaded series circuit
breakers.
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