
Comparison of a Triple Inverted Pendulum Stabilization using Optimal Control Technique

1Mustefa Jibril, 1Messay Tadese and 2Eliyas Alemayehu Tadese
1School of Electrical and Computer Engineering, Dire Dawa Institute of Technology, Dire Dawa, Ethiopia
2Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma, Ethiopia

Key words: Inverted pendulum, linear quadratic
regulator, pole placement, strongly, controllers

Corresponding Author:
Mustefa Jibril
School of Electrical and Computer Engineering, Dire
Dawa Institute of Technology, Dire Dawa, Ethiopia

Page No.: 60-67
Volume: 14, Issue 6, 2020
ISSN: 1990-7958
International Journal of Electrical and Power Engineering
Copy Right: Medwell Publications

Abstract: In this study, modelling design and analysis of
a triple inverted pendulum have been done using
MATLAB/Script toolbox. Since, a triple inverted
pendulum is highly nonlinear, strongly unstable without
using feedback control system. In this study, an optimal
control method means a linear quadratic regulator and
pole placement controllers are used to stabilize the triple
inverted pendulum upside. The impulse response
simulation of the open loop system shows us that the
pendulum is unstable. The comparison of the closed loop
impulse response simulation of the pendulum with LQR
and pole placement controllers results that both
controllers have stabilized the system but the pendulum
with LQR controllers have a high overshoot with long
settling time than the pendulum with pole placement
controller. Finally, the comparison results prove that the
pendulum with pole placement controller improve the
stability of the system.

INTRODUCTION

An inverted pendulum is a pendulum that has its
center of mass above its pivot point. It is unstable and
without additional assist will fall over. It may be
suspended stably in this inverted position by means of the
usage of a feedback control system to reveal the angle of
the pole and flow the pivot factor horizontally returned
beneath the center of mass while it begins to fall over,
retaining it balanced[1]. The inverted pendulum is a classic
problem in dynamics and manage idea and is used as a
benchmark for testing control techniques. An inverted
pendulum is inherently unstable, and have to be actively
balanced with a view to stay upright; this could be
accomplished either by applying a torque at the pivot
factor with the aid of transferring the pivot point

horizontally as a part of a feedback system, changing the
state of rotation of a mass installed at the pendulum on an
axis parallel to the pivot axis and thereby generating an
internal torque at the pendulum or with the aid of
oscillating the pivot factor vertically[2,3]. In order to
stabilize a pendulum in this inverted position, a feedback
control system may be used which monitors the
pendulum’s attitude and actions the position of the pivot
point sideways while the pendulum starts off evolved to
fall over, to hold it balanced.

MATERIALS AND METHODS

Mathematical modeling: The pendulum consists of three
arms that are hinged by ball bearings and can rotate in the
vertical plane. The torques T1 and T2 are the inputs to the 
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Fig. 1: The triple pendulum

Fig. 2(a, b): System configuration

pendulum with the middle hinge made free for rotation.
By controlling the angles of the arms around specified
values, the pendulum can be stabilized inversely with the
desired angle attitudes. The triple inverted pendulum is
shown in Fig. 1.

Let Ti denote the angle of the ith arm measured from
the vertical axis as shown in Fig. 2. The mathematical
modelling of the triple inverted pendulum is derived under
the assumption that each arm is a rigid body. Lagrange
differential equations is the method used to construct the
triple pendulum with a nonlinear vector-matrix
differential (Eq. 1) of the form:
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And the q matrix and G matrix are:
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After  linearization  of  Eq.  2  under  the assumptions
of small deviations of the pendulum from the vertical
position  and  of  small  velocities,  one  obtains  the
following Eq. 4:

(4)
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The  block-diagram  of  the  pendulum  system  is
shown   in    Fig.   3   and   the   nominal   values   of   the
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Table 1: The description of the system
Symbols Descriptions
li Length of the ith arm
hi The distance from the bottom to the centre of gravity of the

ith arm
mi Mass of the ith arm
θi Angle of the ith arm from vertical line
Ci Coefficient of viscous friction of the ith hinge
Ii Moment of inertia of the i-th arm around the centre of gravity
Tj Control torque of the jth hinge

Table 2: Nominal values of the parameters
Symbols Values
h1 0.45 m
h2 0.2 m
h3 0.3 m
l1 0.5 m
l2 0.4 m
m1 3.5 kg
m2 2 kg
m3 2.25 kg
I1 0.55 kg m2

I2 0.12 kg m2

I3 0.65 kg m2

C1 0.07 N m sec
C2 0.03 N m sec
C3 0.009 N m sec

Fig. 3: Block-diagram of the pendulum system

parameters are given in Table 1 and 2. The state space
representation of the triple inverted pendulum becomes:
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The proposed controllers design
LQR controller design: The principle of most reliable
optimal control is involved with working a dynamic
system at minimum cost. The case wherein the system
dynamics are described via. a fixed of linear differential 

Fig. 4: Block diagram of the triple inverted pendulum
with LQR controller

equations and the cost is defined through a quadratic
function is referred to as the LQ problem. One of the
primary outcomes within the theory is that the solution is
furnished with the aid of the Linear Quadratic Regulator
(LQR)[4]. The block diagram of the triple inverted
pendulum with LQR controller is shown below in Fig. 4.
In this study, the value of Q and R is chosen as:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 5 0
Q 10 and R

0 0 0 1 0 0 0 5

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
   

    
   
 
  
 

The value of obtained feedback gain matrix K of
LQR is given by:

87.4053   32.8355   25.6454   27.1508   11.2981   11.1817
K

97.7657   45.7910   30.0834   31.2118   15.6479   12.9896

 
  
 

Pole placement controller design: Pole placement is a
way employed in feedback control system principle to
region the closed-loop poles of a plant in pre-decided
locations in the s-plane. Placing poles is proper because
the region of the poles corresponds immediately to the
eigenvalues of the system which control the traits of the
reaction of the system[5, 6]. The system ought to be
considered controllable on the way to put into effect this
technique. The block diagram of the triple inverted
pendulum  with  pole  placement  controller is shown in
Fig. 5. The state equations for the closed-loop system of
Fig. 5 can be written by inspection as:

(7)
   x Ax+Bu Ax+B -Kx A-BK x

y Cx

  





The poles for this system is chosen as:
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Fig. 5: Block diagram of the triple inverted pendulum
with pole placement controller

 P = -1, -2, -3, -4, -5, -6

Solving using MATLAB the robust pole placement
algorithm gain will be:

19329      8885    7472    11601    5861    6699
K

23483    10820    9086    14362    7268   8307

 
  
 

RESULTS AND DISCUSSION

Controllability and observability of the pendulum: A
system (state space representation) is controllable iff the
controllable matrix C = [B AB A2B, ..., An-1B] has rank
n where n is the number of degrees of freedom of the
system.

In our system, the controllable matrix C = [B AB
A2B A3B A4B A5B] has rank 6 which the degree of
freedom of the system. So, the system is controllable. A
system (state space representation) is Observable iff the
Observable matrix D = [C CA CA2….CAn-1] T has a full
rank n. In our system, the Observable matrix D = [C CA
CA2 CA3 CA4 CA5] T has a full rank of 6. So, the
system is Observable.

Open loop impulse response of the triple inverted
pendulum: The open loop simulation for a 1 Nm impulse
input of torque 1 for angular displacement 1-3 and for
angular  velocity  1-3  is  shown  in  Fig. 6-11 and for
torque 2 input the angular displacement 1-3 and for
angular velocity 1-3 is shown in Fig. 12-17, respectively.
As we seen from the Figures above the angular
displacements and the angular velocities are unstable[7].

Comparison of the triple inverted pendulum with
LQR and pole placement controllers for impulse input
signal: The comparison of the triple inverted pendulum
with LQR and pole placement controller for a 1 Nm
impulse input of torque 1 for angular displacement 1-3
and for angular velocity 1-3 is shown in Fig. 18-23 and
for  torque  2  input  the  angular  displacement  1-3  and
for angular velocity 1-3 is shown in Fig. 24-29,
respectively.

Fig. 6: Response of θ1; for a 1 Nm impulse input of T1

Fig. 7: Response of θ2; θ1 for a 1 Nm impulse input of T1

Fig. 8: Response of θ3; θ1 for a 1 Nm impulse input of T1

As we seen from Figure 18, 19 and 20, for the
impulse signal the angles starts to increase and returns to 
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Fig. 9: Response of θ1; θ1 for a 1 Nm impulse input of T1

Fig. 10: Response of θ2; θ1 for a 1 Nm impulse input of
T1

Fig. 11: Response of θ3; θ1 for a 1 Nm impulse input of
T1

0° for the two controllers but the pendulum with LQR
controller  has  a  high  overshoot  with  more settling time 

Fig. 12: Response of θ1; θ1 for a 1 Nm impulse input of
T2

Fig. 13: Response of θ2; θ1 for a 1 Nm impulse input of
T2

Fig. 14: Response of θ3; θ1 for a 1 Nm impulse input of
T2
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Fig. 15: Response of θ1; θ1 for a 1 Nm impulse input of
T2

Fig. 16: Response of θ2; θ1 for a 1 Nm impulse input of
T2

Fig. 17: Response of θ3; θ1 for a 1 Nm impulse input of
T2

Fig. 18: Response of θ1; θ1 for a 1 Nm impulse input of
T1

Fig. 19: Response of θ2; θ1 for a 1 Nm impulse input of
T1

Fig. 20: Response of θ3; θ1 for a 1 Nm impulse input of
T1
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Fig. 21: Response of θ1; θ1 for a 1 Nm impulse input of
T1

Fig. 22: Response of θ2; θ1 for a 1 Nm impulse input of
T1

Fig. 23: Response of θ3; θ1 for a 1 Nm impulse input of
T1

than  the  pendulum  with  pole  placement  controller.
Figure 21-23 for the impulse signal the angular velocities 

Fig. 24: Response of θ1; θ1 for a 1 Nm impulse input of
T2

Fig. 25: Response of θ2; θ1 for a 1 Nm impulse input of
T2

Fig. 26: Response of T θ3; θ1 for a 1 Nm impulse input of
T2

starts   to   increase   and   returns   to   zero   for   the two
controllers   but   the   pendulum   with  LQR  controller 
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Fig. 27: Response of θ1 Dot; θ1 for a 1 Nm impulse input
of T2

Fig. 28: Response of θ2 Dot; θ1 for a 1 Nm impulse input
of T2

Fig. 29: Response of θ3 Dot; θ1 for a 1 Nm impulse input
of T2

has a high overshoot with more settling time than the
pendulum with pole placement controller. As we seen
from Fig. 24-26, for the impulse signal the angles starts to
increase and returns to zero degree for the two controllers
but the pendulum with LQR controller has a high
overshoot with more settling time than the pendulum with
pole placement controller.

As we seen from Fig. 27-29, for the impulse signal
the angular velocities starts to increase and returns to zero
for the two controllers but the pendulum with LQR
controller has a high overshoot with more settling time
than the pendulum with pole placement controller.

CONCLUSION

In this study, stabilization of the triple inverted
pendulum with LQR and pole placement controller have
been analyzed simulated and compared suceesfully. The
open loop simulation prove that the system is not stable
without feedback control system. Comparison of the
proposed controllers for an impulse input have been done
and the system with pole placement controller improves
the stability of the system.
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