
Model Based Control for Insulin Infusion System in Postoperative Diabetic Patients: A Novel
Approach

A. Alavudeen Basha and S. Vivekanandan
School of Electrical Engineering, VIT University, 632 014 Vellore, Tamil Nadu, India

Key words: Diabetic infusion system, minimal model,
model predictive control, internal model control, blood
glucose, infusion system

Corresponding Author:
Alavudeen Basha,
School of Electrical Engineering,
VIT University, 632 014 Vellore,
Tamil Nadu, India

Page No.: 50-55
Volume: 13, Issue 03, 2019
ISSN: 1990-7958
International Journal of Electrical and Power Engineering
Copy Right: Medwell Publications

Abstract: In post-operative period, the variation of the
blood glucose level is one of the important complications
to be controlled which avoid abnormal conditions like
hypo/hyper glycaemia that leads to emergency situation.
To overcome this condition the closed loop control
strategy is used to infuse the insulin to the human body as
a continuous infusion system that stabilizes its level. In
this study two different model based controllers (Model
predictive control and Internal model control) were
designed and their performances were observed. The
output of the controller were compared and tested with
Bergman minimal model in normal condition and even
with series disturbance like meal and exercise. The results
clearly predict that model predictive controller
performance is better and meets the target.

INTRODUCTION

The increment or decrement to the basel value is
called hypo/hyper glycemia state which is dangerous of
that hypoglycemia is a more serious and it can cause coma
or may be even fatal. Hypoglycemia is a well-known
complication for cardiac surgery patients and a study
clearly depicts that the glucose levels were high which
was reviewed from 1, 586 patients of vascular surgery 560
(36%) persons, 227 (14%) had colon related surgery and
779 (50%) were part of surgical procedure (Anonymous,
2012 a, b). The literature survey portrays that researches
have made an attempt to find various methods to treat the
post-operative patients and one of the common traditional
method is closed loop insulin delivery system (Artificial
pancreas) that is capable of maintaining glucose level for
diabetic patient with the desired level of insulin delivery
(Cobelli et al., 2011).

The insulin infusion system is an integrated system
contains synthetic materials as per the medical standards
which will substitute the pancreas with sensing the blood
glucose and calculate the desired amount of insulin
required and deliver the desired amount to the human
body with the help of insulin pump. Figure 1 shows the
basic  architecture  of  the   closed   loop   insulin   control 

Fig. 1: Closed loop drug delivery control structure

system in which the controller regulates the details
between the sensor input and desired insulin range
(Bergman et al., 1979).

The control algorithm is used based on the optimal
requirement and the controller input given to insulin pump 
with  the  help  of  syntactic  micro  needle.  In  this study 
the  proposed closed loop control  strategy  will produce
the output equal to the pancreas and this research is keen
to develop the system which will produce the optimal
insulin infusion.

MATERIALS AND METHODS

The mathematical model describes the dynamics of
the human diabetic system that helps to find the
correlation  between  the  insulin  and  its  resistance  also, 
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Fig. 2: Bergman minimum model system architecture 

helps to design the control system based on standard rules
and measures (Vivekanandan and Devanand, 2015).
Basically the human body  is  a  nonlinear  stochastic  and
intrinsic system of that pancreas is an independent system
that controls the blood glucose level. When pancreas does
not work properly, insulin has to be pumped artificially to
the patient which plays an important role called artificial
pancreas (Basha and Vivekanandan, 2017a, b). During the
last decades an interesting number of mathematical
models has been developed based on the non-exhaustive
criteria (Shah et al., 2014), the different aspects of
diabetes (Basha and Vivekanandan, 2017a,b) including
glucose-insulin dynamics, beta-cell function (Bergman
and Urquhart, 1971), epidemiology of diabetes (Lehman
and Deutsch, 1992) management and the burden of
diabetes and its complications (Bergman et al., 1979).
Bergman an awardee of the Anonymous (2015) for his
achievements in the development of the famous minimal
model, Fig. 2 for diabetes that indicates the importance of
mathematical model in the basis of diabetes and its
management.

Based on the observation the parameters has taken for
an steady state process with approximate parameters and
the model designed based on the selected approximate
values also these models limited with real time prediction
of the glucose measurement. The observation of
frequently measured data with insulin availability, glucose
compactness along with sensor system errors (Shah et al.,
2014):
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In the model Gm(t) is noted as plasma glucose
concentration (mg/dL) and I(t) denotes insulin
concentration (μU/mL). The Ib is considered as basal
value of insulin level (mU/L) and Xi(t) is observed as
insulin in plasma glucose, U(t) is called as external input
insulin (mU/min) and Di(t) is external input glucose of the
human body (mm/min). Ib and Gb are glucose and insulin
concentration before infusion of the insulin. The P1-P3 are
patient parameters taking as random and ‘n’ is change in
rate of insulin which is used in plasma layer (Min-1).
Bergman theory denotes the values of the parameters
(Basha and Vivekanandan, 2017a, b), P1-P3 may be
regulates based on the different conditions the values are
P1 = 0, P2 = 0.025, P3 = 0.000013 and for type 1 diabetic
patient and the values can be identified as follows P for
normal person, the values are P1 = 28/1000, P2 = 25/1000,
P3 = 0.000013 (Shah et al., 2014; Bergman et al., 1979;
Basha and Vivekanandan, 2017a, b; Bergman and
Urquhart, 1971).

Based on the values and equations, Lynen and
Bequette  developed  a  diabetic model process transfer
Eq. 6 along with the process parameters (Morari and
Zafiriou, 1989):

(4)    g

-3.79
Gp s =

40s+1 10.8s+1

Also, the transfer function with meal to be consider
as follows:

(5)   m

8.44
Gd s =

s 20s+1
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Fig. 3: Architecture of model predictive control system

The meal difference is consider as pulse value, the 5
g glucose meal consumed in 15 min tile lag, the pulse is
developed with the scale of 3.33 g/min with the same
duration.

Controller scheme
Model predictive controller: Model Predictive
Controller (MPC) is an advanced control technique used
in process industries, since, 1980. As MPC offers several
important advantages such as fast response, accurate
model prediction, multiple input/output processes in a
systematic manner, controlled optimal set point, dynamic
model relay and dynamic principles these controllers are
used in bio control field (Lehman and Deutsch, 1992).

MPC can handle the constraints of the process
variables and it can be  manipulated and controlled by the
variables in a systematic manner for an  multivariable
control problems naturally, also  it is an easy to tune
method (Breithaupt, 2010) it is a totally open
methodology based on certain basic principles which
allow for future  extensions (Chen et al., 2007). The
controller schemes are based on the running process of the 
measurement and the process output is to beresponsible
on the predictions of the values in future condition. The
MPC controller calculations are based on predicted
system variables at present  condition  with  the  sequence 
of  regulated changes and the controlled changes has been
manipulated in the prediction and it  will move the set
point in an optimal manner and the control technique is
shown in Fig. 3.

If the process is probably accurate with the dynamic
model of the system and the model, current measurements
can be used to predict the values of the process output.
The attained changes may be an individual input variables
of process model (Magni et al., 2007). MPC is
implemented based on discrete time nonlinear process
models, so, the mathematical description can be
represented:

(6) k +1 k kx = f x ,u

The MPC control problem is as follows with the
knowledge of current output yk:

(7)   N-1

k k k k kj = 0
J = y +N + L y +j|k,u +j|k, u +j|k 

The variable N-move is the control sequence that
minimizes the objectives and the measurement is available
the parameters of the problem are updated and a new
optimization  problem  is  formulated  whose  solution
provides  the  next  control.  This  recurrent  optimization
is  using  to  obtain  the  function  and  modified  through
the entire process feedback of MPC to control the
variables.

Internal model control: The Internal Model Control
(IMC) is an advanced control strategy commonly used in
industrial  application  and  controller  algorithm  is  
simple and robust to handle the nonlinear and inaccuracies 
in  the   process.  The  IMC  controller  is contain  the 
specific  locating  process  of  the  controller performance 
also  the  controller  is  taking  the  specific control  track 
of  the  process  for  an  set  point  of  the process  also 
the  IMC  controller   is   contain    the explicit  filter 
technique  to reject  the  disturbance  for  the   steady  
state   processes  (Man    et    al.,    2006). The    internal 
  model    control  system  structure  shown in  Fig.  4 
with  three  different  positions.  The  main  part of  the 
controller  is  used  to  forecast  the  process output  
(Bequette,   2003)   of   the   system.    The following   is 
 the   internal   loop   which   is  used  to differentiate   the 
 process   output   and   the    internal  model  output. To
end, the third position of the controller can be used to
control  the  error  to  compute  the  upcoming  values  of
the  process  outputs  (Rivals  and  Personnaz,  2000).

The difference between the output of the internal
model and the process output is fed back to produce the
error, used by the controller. This helps to reduce the
effect of disturbances on the system (Breithaupt, 2010). In
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Fig. 4: Diagram of IMC structure

this model we have implemented the IMC developed by
Garcia  and  his   co-researchers   (Rivals   and  
Personnaz, 2000)  on  the  patient  model  proposed  by 
slate  and  his co-researchers (Rivera  et al., 1986). The
IMC has been to  control of blood glucose by Jingkun
(2003). The  conventional IMC structure is shown in Fig.
4 in that the parameter Gp is the plant to be controlled and
Gm is a applied plant model of the process, C is the
controller based on model control and x (t) is the system
output and D is the external disturbance of the system.
Based on the parameters the formulae evaluated as
follows:
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RESULTS AND DISCUSSION

The results obtained from MPC and IMC controllers
were simulated, tested and compared that predicts and
evaluates the optimal infusion of insulin to the human
body.

The simulation has been carried out with the help of
MATLAB with virtual patient model to regulate the
desired optimal level of infusion along with the meal
disturbance. The IMC and MPC controllers were verified
based  on  the  designed  parameters  and  the  response of
each  model  was  obtained  in  the  presence  of
disturbances along with meal input. These results are
shown (Table 1 and 2), the performance of the controllers 
are satisfied with both the MPC and IMC controller with
the desired level of infusion control. However, the settling
time for the IMC control of the patient’s responses are
shorter than with MPC, especially, the multiple
disturbance response which has a minimum settling time
hat offered by the IMC controller.

Table 1: Glucose prediction level for IMC and MPC controller
Meal duration IMC controller (mg/dL) MPC controller (mg/dL)
Break fast 93-138 85-132
Lunch 80-139 82-128
Dinner 85-148 85-135

Table 2: Insulin infusion level for IMC and MPC controller
Meal duration IMC controller (mU/min) MPC controller (mU/min)
Break fast 1.2-5 1.3-5
Lunch 0.6-5 0.8-5
Dinner 1.2-5 0.8-5

The tuning parameters are injected in IMC and MPC
controllers which is used to control the blood glucose
system. Figure 5 shows the glucose and insulin outputs of
IMC controller, based on the output response, the blood
glucose increases depends on the meal inputs, similarly
the insulin also increases to bring back the blood glucose
level to normal condition in that scenario the response
time is lagging due to controller action with the disturbed
output, similarly this trend continues for multiple meals
and the insulin level also, changes and reaches the
maximum level. To overcome the disturbance model
predictive controller is used, the glucose and insulin
response are shown in Fig. 6. The MPC allows the
disturbance  and  minimize  the  sudden  change  and  it
bring  backs  the  blood  glucose  concentration  in
minimum level with optimal glucose infusion at the
desired level.

As per the design the MPC controller maintain the
glucose in the desired level while it increases after the
surgical procedures and it will control naturally with
pancreas to inject the insulin to our body to maintain the 
glucose level with the proper controlled delivery whereas
his trend continues for multiple meals and the insulin
level also changes and reaches the desired level. Figure 7
and 8 shows the comparison of IMC and MPC controller
glucose level and insulin responses in this the MPC
controller gives minimum time to reach the measurement 
and the controller taken the lesser time to regulate the
blood glucose based on the optimal insulin infusion rate.
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Fig. 5: Response of glucose vs. Insulin evalution for
controller IMC

Fig. 6: Of glucose vs. Insulin evalution for MPC
controller

Fig. 7: Response of MPC and IMC controller glucose
estimation

Fig. 8: Response of insulin infusion for MPC and IMC
controller

CONCLUSION

In this study the IMC and MPC controllers were
proposed for control the blood glucose system for post-
operative patients. The simulation was carried out with
reference to diabetic model from which glucose and
insulin kinetics were referred with the help of new control
strategy carried out and developed, the meal (glucose) is
taken as a disturbance and based on the feedback the
controlled insulin is infusing to the patient which
maintains the glucose level in the body. The simulation of
the physiological results of the IMC and MPC controllers
are compared and identified the superiority of
characteristics are shown and discussed. The optimal
selection of parameters in MPC regulates the blood
glucose level effectively compared with IMC controller.
The controller settings are adopted using a self-tuning
strategy and the settings has been simulated with the
minimal model.

This output is a major exertion to develop the model
based strategy of continuous glucose control for insulin
pumps. The MPC is an effective model based control
which requires exact model of blood glucose system and
it will vary patient to patient based on the modelling.
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