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Abstract: Markov models may be used for three-and-more-state reliability descriptions of power plants.

Researchers, demonstrate the potential improvement in system reliability calculation accuracy (such as LOLP)

with multi-state power plant reliability descriptions.
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INTRODUCTION

The three-or-more-state reliability description has
particular significance for a power plant system with a
large number of power plant units cogenerating heat and
power. This 1s typically the case in the formerly socialist
countries of Eastern Europe where most power plants
deliver heat for heating purposes. This means that power
plants have two products: Power for the transmission
network and heat (usually in a hot water medium) for
district heating systems.

The maximum power output of cogeneration power
plants, such as extraction condensing and back pressure
power plants, is a function of instantaneous heat output.
The maximum power output of an extraction condensation
plant decreases and that of a back pressure plant
increases with increasing heat output.

Consequently, extraction condensing and back
pressure power plants may experience states other than
random failure (forced outage), 1.e., full loss of capacity
because the current heat output, also limits the maximum
electric capacity available to the system.

In current practice, the reliability modelling of
power plant umts which cogenerate heat and power
involves a two-state reliability description. This is a
considerable oversimplification of the real course of
operation and limits the accuracy of system reliability
calculations (such as LOLP).

The calculation procedure presented here is novel
m its application of a three-and-more-state reliability

description to extraction condensing and back pressure
power plants. Application of the method leads to a
considerable improvement of the accuracy of LOLP
calculations.

ESSENTIAL FEATURES OF THE
STATE SPACE DESCRIPTION

In the reliability modelling of both power plant
units and systems of power plants (or power plant units),
the state space description method 1s one of the most
advanced calculation procedures in current use (Liu and
Singh, 2010).

The state-space description method characterises a
power plant unit by its defined operating states and the
probability of being in each operating state (Ganor and
Zahavi, 1989, Galloway et al., 1969, Dehgham and
Nikravesh, 2008; Endrenyi, 1978).

For the purpose of the reliability description, the
operation of a power plant unit may be regarded as known
if the probability of the power plant unit bemng in each
defined operating state may clearly be defined for any
time (or period of time). This means that the distribution
of probabilities of being in different defined operating
states are known for each time (or period) (Billinton and
Allan, 1984).

Typical defined operating states of power plant
units are operating at full capacity, unavailable (failed),
operating at derated capacity, in reserve and failed reserve
(Billinton and Allan, 1992). An unambiguous description
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requires precisely-set criteria for each operating state, so
that the power plant in the model can definitely be classed
in one of the pre-defined possible operating states in
every case. Which operating states should be defined in
a specific case is decided by the specific aim of the study,
the function of the power plant units making up the
system, the time horizon of the calculations and the
availability and differentiation of the statistical database
describing the reliability behaviowr of the power plant
units being modelled.

A reliability description of power plant units
based on probability theory, therefore determines the
distribution of the probability of being in each defined
operating state at any time.

To formalise the mentioned earliar, let us defined
each operating state by U, U,, ..., U, and the probability
of being in each operating state at time t by p, (t), p, (1), ...,
P (). Since this 1s a complete event system, the following
relation applies for any time t:

Ypn)=1 (1)

The distribution of probabilities of being in the
various operating states is given by the row vector:

p(t) =[P (). P, (b (] = [p()]

If, we know the mmitial mstantaneous probability
distribution (i.e., the row vector p(t=0), the question is
how to determine the probability distributions for being in
each operating state at any other time.

This question may be answered using Markov
Models. There is insufficient space to discuss the theory
of Markov Models here and we give only the relations
which are most important for this study.

Reliability descriptions of power plant units always
use discrete state Markov Models, since power plant
operating states are always discrete (and of finite
number). There 15 a difference in calculation procedures,
however depending on whether the reliability description
uses discrete time-parameter Markov chains  or
continuous time-parameter Markov processes. A discrete
state space and discrete tume-parameter Markov Model,
1.e., a Markov chain, involves a time variable with discrete
values and if the time parameter can take any value, we
have a discrete state-space, continuous time-parameter
Markov chain.

Researchers will now look at an application of
discrete state-space, continuous time-parameter Markov
processes. In general, a stochastic process may be
regarded as a Markov process if the following equation

holds (the Markov property):

&1

(U(tn_1 i= un_l),...,(U(t2 )=, ),

Pl (u(t,)
u (U(tn_l) :un_l)}

(U(tl): 1)

u, )

J=P[(U(t,)=u,)

(3
Where:
U (t) = The state variable at time (the possible values of
state variable U (t) are the defined operating
states U, U,, ..., U
The value of state variable U (t) at time, 1.e., the
operating state occupied at time t, one of the
operating states (17, 1T, ..., U,)

The mentioned earliar relation states that a system
state U (t,) = u, at time t, depends only on the operating
state at time t,, immediately prior to time t, and so
does not depend on the operating states at the
previous times of the stochastic process (t, ty, t ..., t 2
(Armstadter, 1971).

Specific calculations crucially require knowledge of
the state transition probabilities. These are defined by the
following relation:

n (ttra)=pPlU(t+at)=Uu(=U,] @

It 1s implicitly assumed in practical calculations that
the value of w; (t. t+at) does not depend on t, only at.
Such Markov processes are called homogenous Markov
the apparatus
becomes very complicated. The matrix giving every
possible case of the state transition probabilities 13 a

processes. Otherwise mathematical

stochastic matrix:

Ty Ty Ty
® = T Mg Mo (5)
n n n

(6)

The determination of this matrix is central to the
practical calculations. If sufficient historical data is
available to determine its elements, then the power plant
unit may be described using a Markov Model. In the vast
majority of cases, the number of defined operating states
varies between three and five because m practice, the data
required to define state transition probabilities for more
operating states 1s not available.
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Knowing the elements of the state transition matrix,
we can define two very important non-negative,
continuous functions:

a (U)= lim my (6,0)—m, (t.t+ At) o T (t,At)
! At—0 At Ar—0 At
(7)
And:
a_(0)= lim 7, (1,0)— 7=, (t+At) i (t+At)
" At—0 _At Ar—0 At
(8)

The function defined in Eq. 8 denotes the transition
mtensity from seme state U, to ancther state U, at an
arbitrary time t. In the case of Markov processes, the
transition mtensities do not depend on the time t; they are
constant. It follows that:

(At} m (A)=1 (9)
i
And:
(1= m (AL
1-{1-27[]1(131:)} (10)
=lim—>—"2 7
At —0 At

The state transition intensities may be used to
determine the transition intensity matrix:

a11 a12 a’lm
da da a

A= 21 22 Zm (1 1 )
aml aml amm

In the transition mtensity matrix, a; = -a. [t 1s true for
elements of the transition intensity matrix that:

(12)

a, =0, (I<i<m)

The transition probabilities and transition intensities
satisfy the following relations:

=n.,aAt=mn_a (13)

auAt 08y At = L

12
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Taking these together, we can write the relation:

+ ipi (tha, At (14)

i=]

p,(t+At)=p, (t){l iajiAt}

im]

Without giving the detailed derivation, this may be
transformed to yield a system of differential equations
which gives the absolute probability of being m any
defined state U, (j =1, 2, .., m) at any time t:

(15)

Tt is assumed that the initial distribution (t = 0) is:

p,(t)=o,(t), j=12....,m (16)
Equation 15 may be written in the form:
dp(t
%:B(t)*é(m) (17)

When the transition probabilities and transition
intensities are known, it 18 possible to write the
matrix differential Eq. 17 which may be solved in the
way known from linear algebra (Roberts, 1964;
Verma et al., 2010).

For the calculation of LOLP probabilities, it is
important to determine the long-term state probabilities
(Billinton, 1982), 1.e., the value of vector:

P(t):I:pl(t),pz(t),...,pm(t)}:[pl(tﬂ (18)

In the case that t-«<.

System configuration calculations: Where there are a
finite number of system elements and a finite number of
possible operating states, the system has a fimte,
determined number of total system states. For a specific
power plant unit, the set of all possible operating states 1s
called the state space (Cepin, 2011). For a power plant
system, the set containing all possible system
configuration is called the configuration space. The state
space and configuration space can n principle be
expressed graphically with state space diagrams of a
complexity depending on the level of differentiation of the
reliability description and the number of system elements
and possible operating states. Where there are a large
number of system elements and operating states, the
diagram becomes awkward and unclear.
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ADVANTAGES OF A MORE
DIFFERENTIATED RELIABILITY
DESCRIPTION OF POWER PLANT UNITS

A simple example can convey how much more
differentiated the reliability description becomes for both
power plant units and the power plant system through the
use of a three-or-more-state reliability description.

We will consider an illustrative example which for the
sake of clarnty, consists of a system of only two power
plant units. Table 1 and 2 give the main characteristics of
the two power plant units of the example (probability of
being m each operating state, power capacity when in
each operating state) for a two-state and a four-state
reliability description.

For the two-state reliability description, two
operating states are defined for each power plant unit
(operating at full capacity and unavailable). The four-state
rehiability description takes account of the reduced
capacity which the power plant umt has available for
the power system because of the variation in heat output.
The power plant units in the example are extraction
condensation umnits.

Table 3 shows the discrete probability distribution of
the electric capacity available to the system from
the two power plant units in the example for the
two-and-four-state reliability descriptions.

Assuming that the power demand has the same
distribution over the year in the two cases, the LOLP
may be determined for the two and four-state reliability
descriptions. The equation which defines LOLP 1s
(Hall et al., 1968):

$=3P(C=CJP(L>C)) (19)

1

Where:

C (t) = The available electric capacity of the power plant
system at time (MW)

C; = A specific value of the available electric capacity
of the power plant system (MW)

L (t) = The system load at time (MW)

The LOLP wvalues for the example are given n
Table 4. The four-state reliability description is clearly a
more differentiated description of the real operating states
and so allows the LOLP to be determined with greater
accuracy. It follows without, further explanation that the
second case gives a much more accurate figure for the
probability distribution of the electric capacity available
to the system and hence, a more accurate figure for LOLP.

Variation of LOLP value/result of comparative
studies: The vast majority of electric power plant units in
Hungary, also generate heat which they deliver to district
heating systems they are cormected to. That 15 what has
created the need for a more differentiated (four-state)
model of power plant unit reliability.

Comparative studies have been carried out on a
specific power plant system to show the extent and sign
of change in the LOLP values obtained from a four-state,
rather than the hitherto-customary two-state reliability
description of the power plant units in the system. The
calculations involved a large volume of input data and
without going mto the details, the result 1s that the LOLP
value given by the four-state reliability description is 29%
higher than that give by the two-state description.

Table 3: Discrete probability distribution of power plant system electric
capacity
Two-state reliability description

Four-state reliability description

Electric capacity Electric capacity

of power plant Probability of of power plant Probability of
Table 1: Power plant unit characteristics in the two-state reliability system (MW)  of occurrence (-)  system (MW) occurrence (-)
description 0 0,00300000 0 0,00300000
Operating state X1 X2 140 140 0,01250000
Unit U1 180 180 0,01200000
Electric power capacity (MW) 220 0 220 0,04700000 220 0,02250000
Probability of being in operating state (-) 0,94 0,06 2% 290 0,02160000
. ’ ’ 350 350 0,01080000
Unit 12 . 400 0,05700000 400 0,02460000
Electric power capacity (MW) 400 o 430 430 0,09000000
Probability of being in operating state (-) 0,95 0,05 470 470 0,08640000
490 490 0,04500000
Table 2: Power plant unit characteristics in the four-state reliability 510 510 0,16200000
description 530 530 0,04320000
Operating state X1 X2 X3 X4 540 540 0,10250000
Unit U1 570 570 0,08100000
Electric power capacity (MW) 220 180 140 0 580 580 0,09840000
Probability of being in 0,45 0,24 0,25 0,06 620 0,89300000 620 0,18450000
operating state (-)
Unit U2 Table 4: LOLP vahie for two-and-four-state reliability descriptions
Electric power capacity (MW) 400 350 290 0 Two-state reliability description Four-state reliability description
Probability of being in 0,41 0,18 0,36 0,05 LOLP value
operating state (-) 0,085076923 0,228238462
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DISCUSSION OF CALCULATION RESULTS

The calculation results have confirmed our former
results (Fazekas and Nagy, 2010, 2011). However, it 1s
important to emphasize the following repeatedly.

The earliar mentioned improvement in accuracy
applies only to one specific calculation configuration.
There remains the fundamental question of how much the
newly-developed calculation procedure improves the
accuracy of calculations in general. Owing to the nature
of the problem, the accuracy improvement in any
particular improvement depends on many factors but the
main ones are:

*  The number of power plant units modelled using the
more differentiated reliability description relative to
the number in the whole power plant system

¢ The proportion of the installed power capacity of the
power plant system contributed by power plant units
modelled using the more differentiated reliability
description

¢ Thereliability characteristics of the power plant units
modelled using the more differentiated reliability
description

¢ The time scale of the calculation

CONCLUSION

Further experiences have found improvements of
between 10 and 30%. The most striking accuracy
improvements have been found where there were large
temperature changes during the period studied.

The new computation procedure is applicable to the
three-and-more-state reliability description of extraction
condensing and back-pressure power plant units where
the heat output 1s predominantly generated for heating
purposes, 1l.e., heat output i1s proportional to daily
average ambient temperature. The reason for such a strict
constraint on the area of application is that the probability
distribution of maximum available power capacity for such
power plant units may be derived from the probability
distribution of the daily average ambient temperature.
This is because the three-and-more-state reliability
description assumes a knowledge of the probability of
occupation of each defined operating state. This also,
means that the new computation procedure is applicable
in all cases when there is a means for determining the
probability distribution of the defined operating states.

&4
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