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Abstract: This study, presents a new trend methodology for the cost mimimization of an earthing grid system.
To optimally, design an earthing grid system researchers apply a geometric programming approach. In this
approach, the cost minimization variable is positive and the constraints are expressed in a posynomial form. In
forming the cost minimization variable researcher took into consideration the cost of grid conductor, excavation
cost and jomt welding cost. The simulated result shows the geometric programming approach was able
to predict the total length of conductor, the grid configuration, the depth of burial and diameter of conductor
cross section required to design an earthing grid system that meets the optimal safety criterion, as well as cost

of mstallation.
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INTRODUCTION

Mathematical programming is a useful tool
engineering designs especlally when such designs
have to be optimized. The design of earthing grid system
is an optimization design process. Both analytical and
numerical optimization methods have been applied by
several researchers in the design of earthuing grid
system which give accurate results (Sverak, 1976;
Colominas et al., 2002; Taher and Shemshadi, 2008; Lee
and Shen, 2009). The need to produce an efficient and
effective earthing grid system has resulted in further
search for a more accurate mathematical programming
tool.

The fact that the expressions used in the design
of earthing grid are non-linear has prompted some
researchers to use non-linear programming methods,
such as genetic algorithms or probabilistic methods (Tee
and Shen, 2009). Nevertheless, most of these non-linear
optimization techniques can not guarantee that the
global optimum is attained because a local optimum can
stop the searching process. In most cases, these
methods fail to detect the unfeasibility of the problem
(Ribes-Mallada et al., 2011).

Due to these observable defects in some of the
non-linear mathematical tools, the Geometric Programming
(GP) techmque 1s proposed in this study. The geometric
programming 1s a technique that i1s able to globally
optimize a problem when the objective function and the
constraint have a given form. GP ensures that the global

solution is readily found or that the unfeasibility is
detected very quickly (Islam and Roy, 2005; Dupacova,
2010, Sadjadi and Arabzadeh, 2008; Boyd et al., 2007,
Tabr, 2005). The advantage of GP over other non-linear
programmes like GA is the significant development of
point method for solving
optimization problems. This made GP an extremely
efficient and reliable programming tool (Jabr, 2005; Boyd
and Vandenberghe, 2004).

the interior convex

MATERIALS AND METHODS

Basics on geometric programming: GP requires that the
function to be minmimized, the objective or cost function
and all the constraints are to be expressed as monomials
or posynomials functions (Liu et al., 2010; Nesterov and
Nemuwrovsky, 1994). Let, x,, ..., %, denote n real positive
variable and x = x,, ..., x, a vector with components x,.
Then, a monomial function 1s in the equation:

fx)=cxpxi xir (1

Where, ¢»0. A sum of one or more monomial
functions is called a posynomial function that is:

f(x):Z;lckx?‘kx?“....xr?* 2
Where, ¢>0. A Geometric Program (GP) is an

optimization problem of the equation minimize f;, (x)
subject to:
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f{x)<l, i-1,...m

g (x)=1,1i=1,

3)

Where:
fi.. = Posynomial functions
2, = Monecmial functions

The geometric program of the Eq. 5 is the standard
form which could be converted into the convex form that
can be solved using mterior point algorithms by changing
variables y = log (x) or x = ¢ and replacing f<1 with log
(f)<0and log (g) = 0. The transformed geometric program
in convex form 1s written as (Ribes-Mallada ef al., 2011,
Sahidul ANSI, 1986); mimmize log (e*) subject to:

log(fl(ey))g 0i=1....m

log(gl(ey)):o i=1...p

(“4)

Problem formulation: On the basis of the expressions
used m geometric researchers
formulating the problem in line with the applicable
and posynomials. Since, the
problem in mind 1s cost mmimization one of the cost
component 15 the cost of conductors. To obtan tlus,
researchers need the weight of the conductor W, which
can be written as:

programiming, are

conditions-monomials

z

W, :'.'td—W:Lt &)
4

Where:

d = Ddiameter of grid conductor cross section (m)
w, = Specific weight of conductor (kg m™)

L, = Total length of grid conductor (m)

This must be multiplied by a per weight cost factor k;
to arrive at the cost to include in the objective function.
The other costs are that of evacuation of the soil and joint
welding. The expression researchers used for the total
volume dugout V; of a grid system 1s:

v, =h’L, ©)

Where, h depth of burial of conductors (m). If
researchers multiply Eq. 6 by the cost per volume k,, then
the cost of evacuation is obtained The total volume of
weld material V., to be used m welding the joints could be

expressed as:
3

VW:ndI(NJrl)Z (7)

39

Where, N grid configuration. The cost per joint weld
is k; which multiplies the total volume of weld material to
arrive at the cost of welding. The objective fimetion 1s the
sum of the costs of conductor, evacuation and welding,
respectively. That 1s:

2 3

d d
C=kn WL +IGh'L, + ke (N + 1) ()

Equation 8 satisfies the sum of monomials functions
and thus met the one of the conditions for geometric
programming.

Equality constraints are those which must be
satisfied exactly in the cost mimmization The most
important constraint is the Ground Potential Rise (GPR)
which is the product of the grid resistance R, and fault
current Iz For the GPR to meet the safety criterion, it must
be less than or equal to the permissible touch voltage
Viue That is:

I.R_=V,

G g — “touch

o)

Where, I; maximum grid current (A). But, R, is
expressed as (ANSI/IEEE, 1986):

1 Jn 1
R = f‘/—+—
I3 psml{4 A Lt

Soil resistivity (-m)

(10)

Where:

psml =
A

Total area enclosed by the earthing grid system
(m%
3V

Line

E(Zzl-s-zn) an

I,=06

Vi from Lee and Shen (2009) and ANSI/IEEE (1986)
are expressed as:

(1000+1.5C, (h,,K)p, )0.166

touch (1 2)
V=
for 50 kg body weight or;
(1000+1.5C,(h,.K)p, )0.157 (13)

touch

o

for 70 kg body weight;
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1.02[1—M}
_ ps

(14)
* 2h,+1.02
Where:
C, = Surface area derating factor
p, = Surface layer resistivity ({-m)
h, = Surface layer thuickness (m)
t, = Duration of fault current (sec)
Using the permissible touch voltage for a 70 kg

body weight and substituting Eq. 10-12 into Eq. 9
3V

researchers have:
YL LY LR

V3(2z,+72,) ' 4a¥A L, 1s)
0.157

1000+1.5C_(h_ K —_
( + s( 5 )ps) JE
Let, vA=DN then:

3V,

Line P
'\/;(221 N ZD) soil

(1000+1.5C, (h,.K)p, )

141 1

+_
4DN L,
0.157

Ju

0.6

(16)

Where, D is the grid’s parallel conductor spacing.
Equation 16 can be expressed as the generalized
posynomials inequality as:

0.6 3VLine‘\/EX psoil
0.1574/3.(2z, + z,)(1000+ 1.5C, (h,,.K)p, )
{Nﬂl

4DN L,

(17)

<1

The next equality constraint is the diameter d of the
conductor cross A, section which is expressed, as a
function of the fault current T, is written as (L.ee and Shen,
2009; ANSI/IEEE, 1986):

A,
2107, [t g (1%)
o)
_ 3VL,ine %
i’ \/5(221 +7)

’ t:a‘rpr (19)

TCAPx 10" xIn| 14 20 Tn

K,+T,

40

The monomial form of Eq. 19 is:

2x107° <1
A L (20)
d N
n
Where:
T. = Maximum allowable temperature (°C)
T, = Ambient temperature (°C)
K, = l/g,
g = Thermal coefficient of resistivity at reference
temperature T,
T, = Reference temperature for material constants in
°C
t, = Fault current duration (sec)
dy = Mimmum diameter of grid conductor cross
section (m)
a, = Thermal coefficient of resistivity (1/°C)
p: = Resistivity of grid conductor at reference
temperature (p€-m)
TCAP = Termal capacity per unit volume ¢ I/{cm® °C))

Other constraints are (ANSITEEE, 1986):

N<25 (21)

h=025m (22)

4 (23)
h

Having formulated the cost minimization problem, the
geometric programme looks like this, minimize:

2 3

C= klnd?wth +IhL, + kand?(l\u 1y

Subject to:

06> 3Vyft, X Py
0.1574/3.(27, + 7,){1000+1.5C, (h,.k)p, )

{lﬂ_,_i < ’Egl
n

ADN L, |
4d
N =25, h=<025m, - <1

2%107
d

(24)

After obtaining the optimal values for the number of
mesh formation, the total length of grid conductor, the
diameter of cross section of conductor and the depth of
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burial of conductor, the mesh voltage V. and step
voltage V,,, can be obtained using (Lee and Shen, 2009,
ANSI/IEEE, 1986).

Vmgsh — psml'IG'K1'Km (25)
Lt

Vmesh — psoil'IG'Ki'Ks (26)
Lt

K, =0.656+0.172N 27

K, _hr, +l(170.5”*2) (28)
n2h D+h D

D’ (D+2h) h
In |+
16hd  8Dd  4d

K, - (29)
2n ]
I k w(2N-1)
K= b (30)
(2N)
K, = f1+£ (3D
h,
h,=1m (32)

A geometric programming tool box gplab written in
Matlab environment was used in solving the formulated
cost mimimization problem.

RESULTS AND DISCUSSION

The data of the substation 115/13 kV obtained from
ANSUIEEE Std. 80-1986 1s a case study of 70x70 m square
grid and is shown in Table 1. Tt is used in this study, to
validate to accuracy of geometric programming in earthing
grid design.

In addition te the data in Table 1, the
following were also taken note off TCAP = 3846,
Ky, = 245, o, = 0.00378, p, = 5862, T, = 700°C,
T, = 40°C, K, = 1000 Naira kg'; K, = 50 Naira m™
K, = 25 Naira/joint.

These data and Hq. 22 were inputted into ggplab and
the resulting the optimal values in this case are as
presented m Table 2. This was realized with only
42 iterations n just fraction of seconds.

Table 1: Data from ANSTTEEE Std. 80-1986
Data Values

Fault duration t; 0.5 sec
Fault impedance, z; 4.0+ 10.0 0
Fault impedance z 10.04j40.0Q

Current division factor, Sy 0.6

Soil resistivity, Pa 400 Qm
Crushed rock resistivity (wet), o, 2500 Q'm
Thickness of crushed rock surfacing b, 0.1m

Line-line voltage at worst-fault location 115,000V
Table 2: Optimal result of earthing grid

Variables Results
L, (m) 2100.00
N 14.00
h (m) 0.25
d (m) 0.01
R, (@) 272
GPRV (V) 5170.70
Viesn (V) 857.94
Vewp (V) 527.01
Cost (Naira) 81871

CONCLUSION

This study describes a reliable and efficient
procedure for the design of an earthing grid via cost
optimization using geometric programming. For the
example used, the geometric programming enabled us to
compute the essential parameters the total length of
conductor, the grid configuration, the depth of burial and
diameter of conductor cross section required to design an
earthing grid system that meets the optimal safety
criterion, as well as cost of mstallation.
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