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Abstract: The advent of fast computing digital processors has made vector controlled induction motor drives
realisable and its applications have increased mamfold. For performance enhancement, it 15 essential to
accurately estimate the parameters of the induction motor. On line estimation of parameters continue to be
challenging. This study presents a review of the developments in the field during the last two decades. A large
number of research studies have been published during the above period, proposing different techmques for
estimation of rotor and stator resistances. Among the two, the rotor resistance 1s more sensitive to temperature
rise and ageing and therefore has a critical impact on detuning of the control algorithm. Hence in comparison,
only limited researches have dealt with stator resistance estimation. This review covers the well accepted
methods of parameter estimation namely spectral analysis, observer based techmques, model reference adaptive
system and intelligent techniques. Attempt is made to provide a precise and quick reference for the researchers
and practising engineers working in the area of vector control.
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INTRODUCTION

During the past three decades, adjustable speed ac
drive technology has gained a lot of momentum. The
variable speed drive scenario is characterized by the cage
induction motor, wound rotor synchronous motor and the
new category of permanent magnet
synchronous and dc motors. The induction motor s very
popular in drive applications due to its well known

brushless

advantages of simple construction, ruggedness and less
cost. Progress in the field of power electromcs has
enabled the application of induction motors for variable
speed high-performance drives where traditionally, only
dc motors were preferred (Blaschke, 1972). Earlier,
mnduction motors were controlled using scalar control
methods like the voltage-hertz control.

A major revolution in the area of induction motor
based drives was the invention of field oriented or vector
control in the late 1960"s (Blaschke, 1972). The scenario of
variable speed control of cage induction motor 13 shown
inFig. 1. Tt is basically classified into 2 types: scalar based
control and vector based control. In scalar control, only
the magmtude and frequency of voltage, current and flux
linkage variables are controlled. This scheme can control
the speed of the motor satisfactorily under steady-
state only.

Variable speed
control methods

Scalar based control ‘Vector based control

!
L l

Field oriented control Direct torque contrel
h 4 h 4
Direct vector Indireet vectar
control control

Fig. 1: Overview of induction motor control

In vector control, the magnitude, frequency and
instantaneous orientation of voltage, current and flux
linkage vectors are controlled and is valid for steady-state
as well as transient conditions. Thus, the vector control
method 1s superior to scalar control when dynamic
performance 1s important. With the advent of vector
control schemes, the control of an induction motor is
transformed similar to the control of a separately excited
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dc motor by creating independent channels for flux and
torque control. Assuming that the rotor flux orientation is
known, the stator current phasor 1s resolved along and n
quadrature to it. The in-phase component 1s the flux
generating component, i; and the quadrature component
is the torque component, i.. The resolution of the current
requires the knowledge of the rotor flux orientation which
18 known as field angle, 08, This field angle can either be
measured or estimated (Bose, 2003).

Using measured field angle in the control scheme is
known as direct field control and that using estimated
field angle 18 known as indirect vector control scheme.
The absence of field angle sensors and the ease of
operation at low speeds compared to the direct vector
control scheme has increased the popularity of the
indirect vector control strategy. Indirect vector control of
an induction motor presents good tracking for flux and
immediate tracking for torque. Since,
unplementation of mdirect field oriented control requires
an accurate calculation of field angle and slip frequency,
a d-q axis mathematical model of the machine along with
parameter values is needed.

However, the errors in the model parameters can
cause incorrect coupling between flux and torque; the
result is a mismatch between the torque command and the
motor torque in the steady-state mode on the one hand
and an oscillatory response of the transient torque on the
other. Detuning of the rotor parameters renders
implementation of an indirect rotor flux oriented control
scheme unsatisfactory and dependent on operational
conditions of the motor such as temperature,
frequency and the saturation level of the machine.

High performance control requires an accurate
estimate of the machine parameters at all operating pomts;
it should be done continuously on-line. Various schemes
have been proposed for rotor time constant adaptation
such as the model reference adaptive control technique,
an extended kalman filter and spectral analysis method.
Artificial neural network methods for the estimation of
rotor time constant were also investigated (Vas, 1990).

In indirect field oriented control, the major problem is
the rotor resistance which is sensitive to temperature. The
practical temperature excursion of the rotor 1s
approximately 130°C above ambient temperature
(Krishnan and Doran, 1987). This increases the rotor
resistance by 50% over its ambient or nominal value.
When this parameter 1s incorrect in the control algorithm,
the calculated slip frequency 15 mcorrect and the flux
angle is no longer appropriate for field orientation.

This results in instantaneous error in both flux and
torque which can be shown to excite a second order
transient characterized by an oscillation frequency equal

successful
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to the command slip frequency. The R, estimation
algorithm requires the knowledge of stator resistance R,
that may also vary up to 50% during motor operation.
Hence, the error in the values of R, leads to errors in R,
estimation also. The problem is overcome by adding
another on-line estimation for R, to the system, providing
total mmmumty from both stator and rotor resistance
variations.

For combining stator and rotor resistance estimation,
problems relating to simultaneous variation of multiple
parameters has to be understood. Here, one approach 1s
for on-line rotor resistance estimation, the stator
resistance is assumed constant and for on-line stator
resistance estimation, the rotor resistance is assumed to
be constant. So for combining both the estimators, one
estimator will be mactive mitially and after the estimation,
the parameter is passed to the other estimator.

MATERIALS AND METHODS
Rotor resistance estimation methods: The on-line
methods of rotor resistance identification developed so

far could be broadly classified under the following
categories:

s Spectral analysis techniques

»  Observer based techmques

»  Model reference adaptive system based techniques
s Intelligent techniques

Spectral analysis techniques: The spectral analysis
techniques are based on the measured response to a
purposely injected test signal on an existing characteristic
harmonic in the voltage/current spectrum. Stator currents
and/or voltages of the motor are sampled and the
parameters are derived from the spectral analysis of these
combined samples. In the case of spectral analysis, a
perturbation signal is wsed because under no load
conditions of the induction moter, the rotor induced
currents and voltages become low leading to small values
of slip frequency and rotor voltages. Hence, the rotor
parameters cannot be estimated using this method. This
class of parameter estimation technique mvolving signal
iyjection 18 proposed by Nomura et al (1987) and
Wade etal (1997). Ttis an on-line method which does not
require voltage sensors, computation is simpler and
superior to extended kalman filter and the extended
luenberger observer.

Matsuo and Lipo (1983) and Toliyat and Hosseiny
(1993) have proposed injecting negative sequence
components as the disturbance to the system. The former

publication deals with an on-line techmique for
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determining the value of rotor resistance by detecting the
negative sequence currents at 2 different frequencies so
that the rotor resistance can be uniquely derived.

Toliyat and Hossemy (1993) presented another on-
line estimation technique by using the d-q model in the
frequency domain. By keeping the g-axis component of
the motor flux unchanged the disturbance 1s confined to
the d-axis component. By employing FFT of the currents
and voltages, the fundamental components of the
sampled spectral values are obtained for the parameters
estimation. Gabriel and Leonard (1982) proposed a
correlation method to detect misalignment between the
actual motor flux and the rotor flux given by the model.

A small auxiliary signal is added to the d-axis flux
component of the stator current and a correlation function
1s evaluated. The nonzero value of the correlation
function indicates both coupling between fluxes and
discrepancies between the parameters of the model and
those of the motor.

Gao et al (2008) proposed a sensor less rotor
temperature estimator for small to medium sized mains fed
induction machines. With measurements obtained only
from voltage and current sensors, the proposed estumator
can capture the rotor temperature online. The rotor speed
is first extracted from the stator current harmonic spectrum
based on the estimated rotor slot and eccentricity
harmonic frequencies.

Then the inductances are estimated according to the
induction machine equivalent circuit. The stator winding
resistance at ambient temperature is the only motor
parameter needed as input at this stage. Once the
mnductances are obtamed, they are fed mto the
rotor resistance estimation algorithm to yield an estimate
of the rotor resistance.

In this method, the rotor resistance can be obtained
from the spectral analysis of the stator current or stator
voltage measurements. The main drawbacks of this
method are the adverse effect of injecting signal on motor
dynamics and the requirement of extra hardware for signal
Injection.

Observer based techniques: The second classification of
rotor resistance identification methods can be grouped
under observer based techniques. This class of parameter
identification technique is based on either Extended
Kalman Filter (EKF) or Extended Luenberger Observer
(ELO) or adaptive observer. Here, the rotor time constant
15 treated as additional state variable along with rotor
speed so that the above methods can be used for joint
state and parameter estimation efficiently. The
researchers have applied extended observer techniques
for state and parameter estimation for lugh performance ac

&7

drives. However, the problems related to Extended Kalman
Filter (EKF), Extended Luenberger Observer (ELO) are the
large memory requirement, computational mtricacy and
the constraint such as treating all inductances to be
constant in the machine model.

Finch et al. (1998) proposed an application of EKF for
turing an IFO drive. Here, the Riccati difference equation
1s replaced by a lookup table. Although, the complexity of
Riccati equation is reduced, the full-order EKF is
computationally very intensive. In this study, the
application of the full extended kalman filter algorithm to
the online estimation of rotor resistance required for the
slip calculation algorithm of indirect vector control is
presented. Temperature variations in rotor resistance can
be tracked as they occur by making use of a Riccati
equation.

Markadeh et al. (2005) proposed a new adaptive rotor
flux observer for speed sensor less induction motor drives
which provides the rotor speed, stator and rotor
resistances estimations simultaneously. The rotor speed
and rotor flux controllers are designed based on
combination of input-output feedback linearizing, sliding
mode control and Linear quadratic feedback control. It
was shown that the composite rotor speed and rotor flux
controllers in combination with adaptive flux observer
guarantee the system stability and robustness against the
parameter variations and external load disturbance under
persistency of excitation condition. The persistency of
excitation condition is satisfied if a low frequency ac
signal is superimposed to the rotor reference flux under
motor load operation.

Alolwn et al. (1999) proposed a nonlinear robust
adaptive output feedback speed controller for induction
motors. The control uses only measurements of the rotor
position, stator current and temperature. It contains two
observers, a 9th order adaptive observer to estimate the
rotor flux and rotor resistance and a 3rd order high gain
observer to estimate the rotor speed and acceleration from
its position. The control 1s robust to uncertamties mn the
motor parameters and a bounded time varying load
torque.

Model reference adaptive system based techniques: The
3rd group of on-line rotor resistance adaptation methods
is based on principles of model reference adaptive control.
This is the approach that has attracted most of the
attention due to its relatively simple mmplementation
requirements. Here, the basic idea 1s to estimate certain
states from two different directions, one 1s to calculate
using the states of the controllers and the other is to
estimate the same states using measured signals. One of
the estimates should be independent of rotor resistance,
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so that the error between these 2 estimates provide the
correction to the rotor resistance using an adaptive
mechanism which can be a proportional controller. These
methods essentially utilize the machine model and its
accuracy is therefore, heavily dependent on the accuracy
of the model used. In general, these methods primarily
differ with respect to which quantity is selected for
adaptation purposes.

Some of the best known are electromagnetic torque
based, rotor flux based, outer product of stator current
and back emf based, reactive power based, air gap power
based, stator fundamental rms voltage based and d-axis
and g-axis stator voltage based. One of the common
features that all of the methods of this group share is that
rotor resistance adaptation 1s usually operational in
steady-states only and 1s disabled during transients.

Torque reference model: Torenz (1990) proposeda
simplified approach to the continuous on-line timing of
rotor flux feed forward field oriented induction motor
drive. This procedure offers the advantages of not
requiring a special test signal or special test conditions.
The approach takes advantage of the stator voltage
equations which allow robust and parameter insensitive
estimation of the electro-magnetic torque while operating
at nominal speeds for which the stator TR voltage drop is
negligible.

It uses the torque equation to estimate the rotor
resistance. This estimation can be used even under
transient torque conditions. However, there is a need to
know the values of stator resistance (also variable with
temperature), the magnetising inductance and the rotor
inductance.

The reactive-power reference model: Garces proposed a
method i which reactive-power equation used to estimate
the rotor resistance. This method uses stator inductance,
rotor inductance and magnetising inductance but there is
no need to know the stator resistance. A thorough
analysis of the convergence of the rotor resistance
estimate to its actual value shows a strong dependency
on the operating point (supply frequency and load
torque).

Maiti et al. (2008) proposed a detailed study on the
Model Reference Adaptive Controller (MRAC) utilizing
the reactive power for the online estimation of rotor
resistance so as to maintain proper flux orientation m an
indirect vector controlled induction motor drive. Selection
of reactive power as the functional candidate in the
MRAC automatically makes the system immune to the
variation of stator resistance. Moreover, the umque
formulation of the MRAC with the mstantaneous and
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steady-state reactive power completely eliminates the
requirement of any flux estimation in the computation
process.

Thus, the method is less sensitive to integrator
related problems like drift and saturation and also makes
the estimation at or near zero speed quite accurate.

Rotor flux based model: Karanayil ef al. (2007) proposed
a new method of online estimation for the rotor resistance
of the induction motor for speed sensorless indirect
vector controlled drives using artificial neural networks.
The error between the rotor flux linkages based on a
neural network model and a voltage model is back
propagated to adjust the weights of the neural network
model for the rotor resistance estimation.

Outer product of stator current and back EMF method:
To solve the problem of performance degradation due
to parameter variations in an indirect vector control
of an induction motor, a novel and simple estimation
method for rotor circuit time constant was presented by
Tungpimolrut et al. (1994). The proposed method is based
on regulating the energy stored m the magnetizing
inductance which can be calculated from the terminal
voltages and magnetising currents.

The d-axis and g-axis voltage reference models: In
Rowan et al. (1989), the d-axis and the g-axis voltage
equations are used to estimate the rotor resistance. Both
approaches use stator resistance,
inductances and magnetising inductance. The error
between the estimated voltage and the real value 1s
analysed.

This error 1s used to drive adaptive mechamism which
provides estimation of the rotor resistance, it is
demonstrated that the load torque and the supply
frequency affect the convergence of the algorithm in this
case. The MRAC methods are strongly dependent on the
accuracy of the machie model and estimation 1s usually
based on the steady-state machine model.

Further in most cases, the adaptation process does
not work at zero rotor speed and at zero load torque. Some
methods based on MRAC take changes 1in the
magnetising mductance and the operation at light load
torques into account (Vukosavic and Stojic, 1993).

stator and rotor

Intelligent techniques: Recent developments in artificial
intellhigence have led to the application of artificial neural
networks and fuzzy logic for the on-line rotor time
constant/rotor resistance adaptation. Bim proposed a
fuzzy rotor time constant identification based on a fuzzy
optimisation problem in which the objective function 1s



Int. J. Elec. Power Eng., 5 (2): 65-73, 2011

T,
AT/T) 0
0
Knowledge
£ base
Defuzzification
interface
[
Decision |
making logic
z

h h 4 A

Aop UTRDde-oL)

Fig. 2: Fuzzy logic based T, updating scheme for indirect FOC proposed by Bim (2001)

Fig. 3: Rotor resistance estimator using fuzzy logic
proposed by Ta-Cao and Le-Huy (1998)

the total square error between the commanded stator
currents and measured stator currents in the d-q reference
frame as shown m Fig. 2. Because the vanation of the
motor thermal time constant is very slow compared with
the motor electrical time constant, a sampling interval of
5 sec was chosen.

Ta-Cao and Le-Huy (1998) estimated the rotor
resistance with only the steady-state measurements
assuming the resistance variation is very slow. Their
estimation was based on a characteristic function F

defined by:
Ly Gy O
U)E qs ds dt

This characteristic function was estimated using the
reference values as F., and was calculated from the
measured voltages and currents as F,,,. The error between

dAs
dt

F=

60
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Fig. 4. Principle of rotor time constant adaptation
proposed by Ba-Razzouk et al. (1996)

the estimated and actual value of characteristic function
is used to estimate the rotor resistance variation is shown
in Fig. 3. Ba-Razzouk ef al. (1996) proposed another ANN
method for rotor time constant adaptation m IFO
controlled drives. There are 5 inputs to the T, estimator
o w» W, The
traimng signals are generated with step variations in rotor
resistance for different torque reference T, and flux

using neural networl, namely V5, V.5 1, 1

command and the final network is connected in the IFO
controller as shown in Fig. 4. The rotor time constant was
tracked by a PI regulator that corrects any errors in the
slip calculator.

The output of this regulator is summed with that of
the slip calculator and the result constitutes the new slip
command that 1s required to compensate for the rotor time
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constant variation. The major drawback of this scheme is
that the final neural network is only an off-line tramed
network with a limited data file in the modelling.
Mayaleh and Bayinder (1998) proposed a rotor time
constant estimation using a recurrent neural network, their
algorithm used the 3 stator voltage and 3 stator current
measurements m the stator reference frame. The rotor time
constant was obtained at the output of a Recurrent Neural
Network (RNN) as shown in Fig. 5. The 3 inputs to the
RNN were stator currents, rotor fluxes and rotor speed.
Here, the rotor flux was calculated using motor
parameters and the influence of stator resistance on rotor
flux estimation was not accounted for. Even though, the
results and the method employed were elegant, these
results were not backed up by expermnental data
subsequently. The back propagation algorithm 1s used for
trainming of the neural networks (Karanayil et al., 2007)
shown in Fig. 6. The error between the rotor flux linkages

L L L 51T,
I, 3 Rotor Recurrent
v Vi flox - | meursl

— . ?|estimator M network
v, 3 24D V:.- > ﬁ'Lij:
v, L

_)I— d/dt

o,

Fig. 5. Rotor time constant estimator proposed by
Mayaleh and Bayinder (1998)

L. ) | v
- Induction motor .
Tnduction motor
voltage model
I
Induction motor
current model
& ? {Neural network model)

Weight =R,

Fig. 6: Structure of the neural network system for R,
estimator proposed by Karanayil et al. (2007)
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based on a neural network model and a voltage model is
back propagated to adjust the weights of the neural
network model for the rotor resistance estimation. With
this approach, the rotor resistance estimation was found
to be insensitive to the stator resistance variations both
in simulation and experiment. Ebrahimi et al. (2006)
proposed a scheme for the estimation of rotor resistance
using a Neural Networks (NN) block as shown m Fig. 7. In
this system, the flux and torque have been estimated by
using stator voltages and currents.

A back propagation NN receives the
torque errors and a supposed rotor resistance at the
input and estimates the actual rotor resistance at the
output which 15 used in the control of indirect vector
controlled drive system.

The neural network has been tramed off-line with the
mathematical model of the control scheme. Indirect rotor

flux and

flux oriented control used with the NN estimator has been
studied in the detuning condition. The performance of the
controller was good even when the rotor time constant
was increased from nominal value to twice the nominal
value as well as torque variations. In this method,
estimation was done quickly and accurately and its design
was simple.

Other methods: Chan and Wang (1990) have presented a
new method for rotor resistance identification with a new
coordinate axes selection. They set a new reference frame
which was comecident with the stator current vector. The
simulation mvolves the steady-state motor model and 3-2
phase transformation. Using the simulation results of
stator voltage, current and speed in the steady-state, the
stationary reference frame components were obtained
using which the rotor resistance is calculated algebraically
during simulation. Toliyat et al. (1999) proposed a rotor
time constant updating scheme which neither required
any special test signal nor any complex computation. This

R,

Weight adjustment
algorithm

Fig. 7. Procedure of trainging neural network porposed
by Ebratumi et al. (2006)
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technique utilized a modified switching technique for the
current regulated pulse width modulation voltage source
mverter to measure the induced voltage across the stator
terminals. The induced voltage was measured at every
zero crossing of the phase currents. Thus for the 3 phase
induction motor, the proposed technique provided 6
mstants to update the rotor time constant. The techmque
was capable of measuring the rotor time constant for the
minimum stator frequency of 5 Hz.

Stator resistance estimation methods: Marmo ef al.
(2000) addressed the problem of simultaneous on-line
estimation of both rotor and stator resistances based on
the measurements of rotor speed, stator currents and
stator voltages. Their main contribution was in desigming
a novel 9th order estimation algorithm which contains
both rotor flux and stator current estimates. Their design
goal was to force stator current estimation errors to tend
asymptotically to zero for any mitial condition. They have
shown in this study that both stator and rotor resistance
estimates converged exponentially to the true values for
any initial value of stator and rotor resistances.

Bose and Patel (1998) described a quasi-fuzzy method
of on-line stator resistance estimation of an nduction
motor where the resistance value is derived from stator
winding temperature estimation as a function of stator
current and frequency through an approximate dynamic
model of the machine.

The dynamic thermal model of the machine can be
approximately represented by a first order low pass filter
as shown m Fig. 8 Once, the steady-state temperature 1s
estimated by the fuzzy estimator block, it 1s then
converted to dynamic temperature rise through the low
pass filter and added to ambient temperature T, to derive
the actual stator temperature T .. Neglecting the small

Stator Thermistor] Measured tempetature
temperatures - network (Average)
Estimator
registance
Stator T R,
5
current R =Rt
Fuzzy oR,, (T, - 25)
Frquency _| estimator 3 1/(1+15)
o T T
T T
Abmient o R (25°C)
temperature
Thermal
time
constant

Fig. 8: Quasi-fuzzy stator resistance estimator block
diagram proposed by Bose and Patel (1998)
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amount of skin and stray loss effects, the stator resistance
R.is then estimated from the measured temperature rise of
the stator winding using the equation shown in Fig. 8.

Guidi and Umida (2000) proposed an observer based
method for online estimation of the stator resistance of an
induction machine and a speed sensorless field oriented
dnive equipped with the proposed estimator was built. The
drive 1s particularly suitable for low-speed operation.
Resistance is based on a two-time scale approach and the
error between measured and observed current is used for
parameter tuning. The simple full order observer in use
allows for direct field orientation in a wide range of
operation. Holtz and Quan (2002) proposed a scheme to
overcome problems related to parameter estimation at low
stator voltage and low speed operation. A pure mntegrator
was used for stator flux estimation which permits high
estimation bandwidth. Tncreased accuracy was achieved
by eliminating direct stator voltage measurement instead
the reference voltage corrected by a self adjusting non
linear inverter model was used. The time varying
disturbances were compensated by an estimated offset
voltage vector. The stator resistance estimation algorithm
relies on the orthogonal relationship between the stator
flux vector and the mduced voltage mn the steady-state.
The stator resistance was found from the inner
product of these 2 vectors in current coordinates. Current
coordinates 15 a reference frame aligned with the current
vector. The signal flow graph of this stator resistance
estimation scheme is shown in Fig. .

Ha and Lee (2000) proposed an identification
algorithm for stator resistance which has been based on
the steady-state power flow between stator and rotor
through the air gap. The steady-state power across the air
gap was represented as the difference between the
steady-state input power and the steady-state power

w il LR
[t2a7] '
h 3 Il
i g o
Ed
5 T
0
2t ' e |

Fig. 9: Signal flow graph of the stator resistance estimate
or porposed by Holtz and Quan (2002)
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Fig. 10: Stator resistance estimation using artificial neural
network proposed by Karanayil et al. (2007)

dissipated by the stator windings. The air gap power was
calculated using the steady-state value of estimated
torque. The stator resistance was then estimated using
the difference between these 2 steady-state powers. They
have reported that the 1dentification algorithm should be
executed only in the steady-state and cannot do
estimations during transient conditions.

Karanayil et al. (2007) proposed a new method of
online estimation for the stator and rotor resistances of
the induction motor for speed sensorless indirect vector
controlled drives using artificial neural networks. The
error between the flux linkages based on a neural network
model and a voltage model 1s back propagated to adjust
the weights of the neural network model for the rotor
resistance estimation as shown in Fig. 10.

For the stator resistance estimation, the error between
the measured stator current and the estimated stator
current using neural network is back propagated to adjust
the weights of the neural network. The rotor speed 1s
synthesized from the induction motor state equations.
The performance of the stator and rotor resistance
estimators, torque and flux responses of the drive
together with these estimators are mvestigated with the
help of the simulations for variations in the stator and
rotor resistances from their nominal values. Additionally,
the researcher has done both resistances estimation
expermmentally using the proposed neural network m a
vector controlled induction motor drive.

CONCLUSION
The detailed study of rotor resistance and stator

resistance estimation methods of an induction motor
is reported. This review study has covered the well

accepted methods like spectral analysis, observer based
techmques, model reference adaptive system etc., which
are mainly related to rotor resistance estimation. The
literature on application of ANN and fuzzy techniques
used for estimation in induction motor drives has been
reviewed. These techmques have also found applications
in controllers of indirect field oriented drives. The studies
onthe development of ANN and other estimators mitially
assumed the availability of an accurate speed sensor.
Estimation techniques for sensorless operation of vector
control drives has now become an important research
goal.
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