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Abstract: This study presents a new approach to the economic dispatch problems with valve-pomt effects. The

practical economic dispatch problem has a nonconvex cost function with equality and mequality constraints
that it is difficult to find the optimal solutions using any mathematical approaches. A Particle Swarm
Optimization (PSO) with Random Particles and Fine-tuning mechamsm (PSO-RPFT) is proposed to solve
economic dispatch problem. The proposed developed in such a way that PSO with Constriction Factor
(PSO-CF) 1s applied as a based level search which can give a good direction to the optunal global region.
Random particles and fine-tuning mechanism is used as a fine tuning to determine the optimal solutions at the
final. Effectiveness of the proposed method is demonstrated on 3 example systems and compared to that of SA,
GA, EP. Results show that the proposed method 1s more effective in solving economic dispatch problem.
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INTRODUCTION

Typical Economic Dispatch (ED) is to minimize total
fuel cost subjected to several unit and system constraints.
In the traditional ED problem, the generator cost functions
were mostly approximated by piece-wise linear functions
(Lin and Viviani, 1984). By considering the units with
valve-point effects, the conventional process either
ignores or flattens out these portions which could
induce maccurate results.

Recently, stochastic optimization techmques such as
mcluding the Simulated Annealing (SA) (Wong and Fung,
1993; Mantawy ef al., 1998), the Genetic Algorithms (GA)
(Walters and Sheble, 1993; Bakirtzis et al, 1994),
Evolutionary Programming (EP) (Yang et al., 1996,
Jayabarathi et «l, 2003, Sinha et al., 2003), Particle
Swarm Optimization (PSO) (Selvakumar and Thanushkodi,
2007, Victoire and Jeyakumar, 2004; Park ef al., 2005) and
Taguchi method (Liu and Cai, 2005) were applied to solve
this problem. However for highly complex problems, these
applications involved a wide solution space and the large
number of searchung and iterations were susceptible to
related control parameters.

The efficiency will be affected and downgraded.
Particle Swarm Optimization (PSO) based on the analogy
of swarm of bird and fish school 15 developed by
Kennedy and Eberhart (1995). In PSO, each individual
searches a space by adjusting the trajectories of moving

points in a multi-dimensions space and exchanges
pervious experiences for find a better direction. PSO can
generate the high-quality solutions within shorter
calculation time and stable convergent characteristics. In
past, PSO had been successtully applied to various fields
of power system optinization (El-Dib et al., 2006,
Wang and Singh, 2008; Kannan et al, 2004, Yuan et al.,
2007). The disadvantage of the ariginal PSO will be easily
trapped the local optimum and takes a long computation
time for finding the solution.

Shi and Eberhart (1998) proposed the Particles Swarm
Optimization with Inertia Weighted (PSO-IW) for
promoting the convergent rapid and the searching
performance. Angeline (1998) combined the selection
mechanism and PSO to promote the searching rapid and
location of particles for finding better solution. The
Particle Swarm Optimization with Constriction Factor
(PSO-CF) (Clerc and Kemndy, 2000) used a constriction
factor to control the trace of particles without
considering the velocity of particles.

Shi and Eberhart (1998) have a low fine tuning ability
of the solution when the converging solution arrived at
the beginning of the run and a local search near the end
of the run. Therefore, there are more possibilities to
explore local optimum if the problem has more local
optima. In this study, a Particle Swarm Optimization
with Random Particles and Fine-Tuning mechanism (PSO-
RPFT) is proposed to overcome this drawbacle. PSO-RPFT
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introduces 2 operators, Random particles and fine-tuning
into the PSO algorithm for increasing the search
ability.

The process of random particles will add the proper
random particle into the whole particles when the solution
is searched in the each generation. The procedure of
fine-tuning will regulate the best position of group if the
generation will be searched on the late period of PSO
algorithm.

The study of fine-tuning during the tuning
mechamsm can be employed in the algorithm to make the
search method more efficient at the end of search and the
success rate of the searching global optimum could be
increased. Effectiveness of the proposed method is
demonstrated on three example systems and compared to
that of SA, GA, EP and previous publications. Results
show that the proposed method is more effective in
solving economic dispatch problem.

PROBLEM FORMULATION

The ED problem can be modeled as an optimization
process with following objective function and constraints:

M
Objectivefunction C, = Min. ECl (P,) (1)
1=1
subject to power balance constraints;
M
Zpgl = Pluad (2)
1=1
generating capability constramts;
P, <P SP 3
Where:
C; = Total production cost ($ h™")
N = No. of generation unit
C(P,) = Generation cost of power for the ith unit
$h™)
P.. = Total load demand (MW)
Pumin = Lower limit of the real power of the ith unit
(MW)
Py.ww = Upper limit of the real power of the ith unit (MW)

The fuel cost functions of generating units are
characterized (Sinha et af., 2003):

Ci(Py)=a, +bP, +cPi+|e x
sin (f, (P el

gi, min

“4)
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a-c, are the fuel cost coefficients of the ith unit. e, f
are the fuel cost coefficients with valve-point effects.
Basically, these fuel cost functions of generating units are
the nonconvex functions. The associated mcremental
costs are not continuously or monotonically increasing.
Multiple local optimal will exist in the objective function.

RANDOM PARTICLES AND
FINE-TUNING MECHANISM

Brief of particles swarm optimization: [n a PSO system,
birds (particles) flocking optimizes a certamn objective
function. Each agent knows its best value so far (pbest)
and its position. This information is analogy of personal
experiences of each agent. Moreover each agent knows
the best value so far in the group (gbest) among other
agents around them have performed. In this study,
PSO-CF was selected to trace the pbest value and ghest
value. Using the PSO-CF, the velocity can be represented
under the Eq. 5 in the PSO algorithm. Using the Eq. 5, a
certain velocity can be calculated due to the position of
individuals gradually close to pbest and ghest. The
current position can be modified by Eq. &:

Vi =K x|V} + ¢, xrand ()x (pbest);, — B))+

o (5)
¢, ® rand () (gbest' — P, )]
A (6)
Where:
2

,C=¢ F¢c,,c>4

K=—n—-
‘2707\/02 —4c

Where:

¢, ¢; = Acceleration constant (¢,= ¢, = 2.05)

rand () = Uniform random value with a range of [0, 1]

Pl = Dimension g of the position of particle 1 at
Iteration |

vl = Dimension g of the velocity of particle 1 at
iteration

pbest), = Dimension g of the own best position of
particle i at iteration j

gbest! = Dimension g of the best particle in the swarm at

iteration j

Random particle: Tn the PSO procedure, we can select
particles from the set number of particles in a proper ratio
as the random particles. These random particles are
independent from the vector or positions obtained from
individual or population particles. The search of random
particles is conducted randomly in the whole space. The
random particles have the ability of global search in the
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entire design space thus, they are expected to search the
spaces not reached by its population. Besides the random
particles, the remaimng particles m the population update
the information according to their velocities and
positions. This study will not adopt pbest and ghest
when setting random particles for position updating. The
particles thus conduct random search in the design space.
The formulation of random particle 1s expressed as
follows:

(7

1+l _
Pgi

(P

g1, max

-P. __Ixrand O)+P

g1, min g1, min

In this study, imtial particle set to 30 and random
particle set to 5. If the random particles cannot find better
fitness functions when searching the solution space, the
remaining particles of the population will keep searching
according to the velocity and position updating rule.
Thus if random particles can be selected properly, the
original search ability of the population will not be
affected.

Fine-tuning mechanism: At the end of the search period,
the population of particle swarm algorithm would move
toward the optimal solution slowly due to the increasing
similarity between pbest and ghest. Tt takes longer
operating time thus, fine-tuning mechanism can be
employed in the algorithm to make the search method
more efficient at the end of search and the success rate of
the algorithm 1n searching for the optimal solution could
be mereased.

Execution discriminant of fine-tuning mechanism: It 1s
net required to execute the fine-tuning mechanism in each
iteration, the fine-tuning operation 1s carried out only
when the set discrimmant value (pfit) of directional
function and the iteration interval s are met. In this study,
the directional function value (p,fit) of dimension g at ith
iteration 13 adopted as the discrimination condition. The
directional function value of (p_fit) can be expressed as
follows:

[

Pfit - &)
P
Where:
F=1" 1,
And:
P=P" -P}

£} is the fitness function of dimension g of the
position of particle 1 at iteration . Before the execution of
fine-tuning mechanism, we need to preset the value (P,fit)
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and the iteration interval s which are regarded as the
discrimimation condition forstarting the fine-tumng. After
s iterations whether the directional function value of £ is
less than or equal to preset the value (P,fit) 15 determined
if yes, the population will skip normal executive process
of iteration and turn to the fine-tuning mechanism for
fine-tuning operation, otherwise it will resume the original
iterative operation process.

Fine-tuning operational method: In the fine-tuning
mechanism, ghest is treated as the object for fine-tuning
mechamsm in order to find selutions better than gbest n
the fine-tuning region nearby gbest. The formulation of
fine-tuning mechanism is expressed as follows:

best' —gbest’™
P, = gbest gt o] H><[2>< rand 0—1] &)

n

n: dimension of ngt

Each fine-tuning particle p, is calculated to find the
adaptive value (f;) of the objective function and all
fine-tuning particles are sequenced. The optimal
fine-tuning particle P, ., and its corresponding optimal
fine-tuning adaptive value function f; . are selected. If
£, min 18 better than the optimal adaptive value function £,
of the original population, the optimal adaptive value
function f, of the original population and the optimal
design value gbest” will be replaced by adaptive value
function f, . correspending to the optimal fine-tuning

particle and its position P in the solution space.

The procedure of proposed algorithm: A flowchart of the
PSO-RPFT is briefly shown in Fig. 1. The detail of
PSO-RPFT can be described as follows. Set the particle
population, random particle population, number of
iterations, iteration interval s deciede value of directional
function Pfit. During the execution of iteration determine
the decision value of directional function P fit and the
regarded as the
discrimination condition for starting the fne-tuning
operation. After s iterations whether the f, directional
function value P fit<P fit is judged if yes, the population
will skip normal executive process of iteration and turn to
step 7 for fine-tuning operation otherwise, it will resume
the original iterative operation process.

Calculate the optimal objective function adaptive
value (fit) of particle in the design space. Compare the
function adaptive value (fit)) obtained by the particle with
pbest function adaptive value (fit ,.«) searched m the
design space if the position of fit, ., 1s better than
that of function adaptive value (fit), a replacement shall
be performed otherwise, this step is skipped. After step 4

iteration mterval s wlich are



Int. J. Elec. Power Eng., 5 (1): 35-41, 2011

Intislization |

For particle i |
evaluate its fitness

Applying
fine-tuning operator
and f, evaluate its filness

Set pbest=np,
£ e

| Update position and velocity I.i

if fit <fit, .,
Yes
Sct gbest=7p,
fit; = fit, s

Set gbest=p,
il LT
Stop generation and
output the optimal result
Fig. 1. The flowchart of the PSO-RPET
and the replacement 1s carried out, compare with the ghest CASE STUDY

function adaptive value (fit, ,.,) which has been searched
in the design space. If the position of fit; .. is better
than the optimal function adaptive value obtained
through step 4 then a replacement shall be carried out
otherwise this step is skipped.

The function adaptive value of random particle
population updates its speed and position according to
Eq. 7 and the other particle populations update the speed
and positions according to Eq. 5 and 6. If PSO-RPFT
algorithm meets the condition of step 2 then gbest shall
be regarded as the object for fine-tuning operation and
the fine-tuming particle population will calculate the
function adaptive value according to Eq. 9.

Compare the function adaptive value obtamed from
the fine-tuning operation of step 7 with the function
adaptive value prior to the fine-tuming if the former is
better, a replacement shall be carried out otherwise, it 1s
skipped.

The number of iterations is regarded as the stop
condition, the iteration shall be stopped when the number
1s reached and the optimal objective function adaptive
value 18 exported otherwise, return to step 2 and continue
the iterations.
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PSO-RPFT 1s numerically tested on three cases of ED
problem. The associated fuel cost coefficients are adapted
from (Sinha et «f., 2003). Each optimization method
(PSO-RPFT, PSO, SA, GA and EP) is implemented with
Matlab language ona PTV-2.6 GHZ computer with 512 MB
RAM.

Generating units: This case includes three generating
units with nonconvex cost functions. In this case, the
load demand 1s 850 MW. About 100 generations 1s set in
this case as the stopping criteria. To verify  the
performance of PSO-RPFT, P3O, SA, GA and EP methods
are adapted to test on same case as shown m Table 1.
About 100 test runs are conducted for each method. From
the Table 1, PSO-RPFT has more probability to reach
optimal solution for each trial test. Other evolutionary
algorithms for each trial test are often converged to the
different optimum.The no. of reaching optimum and the
average execution time of each trial test are 32 and 0.3268
sec. It is obvious that the performance of PSO-RPFT
is  better than other evolutionary algorithms. The
convergent characteristics of different methods are
shown in Fig. 2.
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Table 1: Simulation results of 3 generating units with ditferent methods

Generating units PSO PSO-RPFT R GA EP
Worst ($ h™) 8253.884 8250.472 8286.671 8434.020 8289.681
Average ($h™) 8241.163 8240.595 8252.725 8287.483 8249.409
Best ($h71) 8234.073 8234.072 8234.135 8234.419 8234.135
No. of trial reaching optimum 26 32 4 2 10
Average execution time (sec) 0.3104 0.3268 0.1828 0.5083 0.5094
Table 2: Robust test of 13 generating units with different methods
Generating units PSO PSO-RPFT SA GA EP
Worst ($h™) 18280.871 18245384 18245.384 18586.885 18575.500
Average ($h™") 18130.797 18116.586 18116.586 18299.255 18283.772
Best (3h™) 18025.525 17976.015 17982.368 18158.994 18100.261
No. of trial reaching optirmim 18 24 6 5 6
Average execution time (sec) 4.6381 57441 10.9568 11.1013 8.6657
Table 3: The generation output and the corresponding cost 1.92+ x10*
. Py i Py nax Generation 13 units convergence
Units (MW) (MW) (MW) Cost (3 h7H 1941 PSO
1 0 680 448.7999 4241.68064 L
2 0 360 225.4622 21726343
3 0 360 226.4388 21863.9769
4 60 180 109.8788 1129.6947 &
5 60 180 109.8700 1129.5380 E’
6 60 180 109.8918 1129.9283 8
7 60 180 159.7392 1559.1131
8 60 180 109.8748 1129.6255
9 60 180 109.8698 1129.5345
10 40 120 40.0148 474.7989
11 40 120 40.1083 476.4097 178
12 55 120 55.0197 607.9321 . T T T T T T T 1
13 55 120 55.0319 608.1424 0 100 200 300 400 _500 600 700 800
Total generation and cost 1800.0000 17976.0149 Heration
Fig. 3: The convergent characteristics of the differernt
8550 3 units convergence methods
85004
average execution time and the no. of trial reaching
8450 optimal have obviously better searching efficiency than
other evolutionary algorithms. Due to the converged cost
o 34004 -
2 can reach the smaller value than other evolutionary
& 8350 algorithms, 1t 1s a better probability to guarantee a

83004

§250

3200 T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 2: The convergent characteristics of the differnet
methods

Case-2 consists of 13 generating units which has
nonconvex functions with valve-point effects. The load
demand 15 1800 MW. About 800 generations 1s set in this
case as the stopping criteria. Table 2 shows the robust
test for all methods. Each method 1s executed by 100 trials.
The best converged cost of the PSO-RPFT 15 17976.015
the average execution time of each test 1s 5.7441 sec. The
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global optimum. From the Table 2, it can be proved that
PSO-RPFT is a better performer in terms of solution
quality, execution time and improving the searching
performances. The generation output and the
corresponding cost of the best solution can be shown in
Table 3. Figure 3 13 the convergent characteristics of the
different mothos.

Generating units: Case-3 has 40 generating units which
is a large system with more nonlinearity. The load demand
is 10500 MW. Total 1000 generations is set in this case as
the stopping criteria. Table 4 shows the robust test with
different methods.

Each method is also executed by 100 trials. The
average cost of the PSO-RPFT is $122813.371 and the
average execution time of each test 13 29.9832 sec.
Table 5 shows the results of PSO-RPFT are compared
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Table 4: The robustness test for all methods

Generating units P8O PSO-RPFT
Worst ($h1) 123730.032 123571.798
Average ($h™") 122958.562 122813.371
Best ($h71) 122473.126 122083.612
No. of trial reaching optirmim 11 15
Average execution time (sec) 25.2970 29.9832

SA GA EP
Worst (3 h™h) 123962.6070 123531.1440 128786.7670
Average ($h™") 123170.7990 122929.3560 126166.2050
Best ($h™) 122218.0170 122293.7130 124152.2070
No. of trial 2.0000 1.0000 1.0000
reaching optirmum
Average execution 55.0468 34.2876 45.9765

time (sec)

Table 5: Comparison of simulation results

Results

Minimal cost (§ h™)

CEP (Sinha et i, 2003)
FEP (Sittha ef ai., 2003)
MFEP (Sinha et al., 2003)
IFEP (Sinha et al., 2003)
MPSO (Park et af., 2003)
TM (Liu and Cai, 2005)
PSO-RPFT

123488.290
122679.710
122647.570
122624.350
122252.265
122477.780
122083.612

Table 6: The number of convergent cost range for each trail test

Range of cost (10008 h™)

127.0- 126.5- 126.0- 125.5- 125.0-
Factors 126.5 126.0 125.5 125.0 124.5
CEP 10 4 - 16 22
FEP 6 - 4 2 10
MFEP - - - -
IFEP - 2 4
T™[ - - - 2
PSO - 1 3 8
PSO-RPFT - - - . P
124.5- 124.0- 123.5- 123.0- 122.5-
124.0 123.5 123.0 122.5 122.0
CEP 42 4 2 - -
FEP 20 26 24 4] -
MFEP 14 26 50 10 -
IFEP 4 18 50 22 -
™[ 2 12 52 22 10
PSO 14 25 22 19 8
PSO-RPFT 10 23 26 23 12
1424 5q0° .
L4 40 units convergence PSO
=—=== PSO-RPFT
1.38 el &)
1.364 : - g:
8 1.34-.=
7 g
1.32
S \
134 &
128 |
1,264
1.24 4
1'22 T T L] T L] .
0 100 200 300 400 500 600 700 800 9S00 1000

Tteration

Fig. 4: The convergent characteristics of the different
methods
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with the results of pervious algorithms by Sinha et al.
(2003), Park et al. (2003) and Liu and Cai (2005) such as
Classical EP (CEP), Fast EP (FEP), Modified FEP (MFEP),
Improved FEP (IFEP), Modified PSO (MPSO) and Taguchi
Method (TM). Although, the solution is not guaranteed
to be the global optimum, the superiority of PSO-RPFT
has been still shown in Table 5. To compare the results
with pervious algorithms in a statistical maemnmer, the
relative probability of convergence is provided for each
range of cost as shown in Table 6. From the Table 6, PSO-
RPFT can observe the more robustness than other
evolutionary algorithms. Figure 4 13 the convergent
characteristics of the different methods.

CONCLUSION

A PSO-RPFT for solving the economic dispatch
problem with valve-point effects i1s presented m this
study. Many nonlinear characteristics of umits could be
handled properly in PSO-RPFT procedure with a
rules,
PSO-RPFT 1s using a random particle and fine-fine-tuning
technique enhance the searching
performance that leads to a higher probability toward
obtaining the global optimum. Test results reveal that the

reasonable time. Instead of deterministic

mechanism to

solutions can reach a better value in each trail test. With
the advantages of both heuristic ideals and A, PSO-RPFT
has the conventional ideals in 3 fold: the complicated
problem is solvable with a better performance than AT and
the more likelihood to get a global optimum than heuristic
methods. PSO-RPFT 1s first developed to be applied in ED
problem. Tt has great potential to be further applied to
many ill-conditioned problems in power system plaming
and operation.
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