International Tournal of Electrical and Power Engineering 4 (2): 45-53, 2010

ISSN: 1990-7958
© Medwell Journals, 2010

The Effect of Power System Stabilizer on Small Signal Stability in
Single-Machine Infinite- Bus

'G. Shahgholian and *J. Faiz
"Department of Electrical Engineering, Islamic Azad University, Najaf Abad Branch, Esfahan, Iran
*Department of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Iran

Abstract: Power system oscillations are a characteristic of the system and they are mevitable. Power System
Stabilizer (PSS) can help the damping of power system oscillations. This controller has become an accepted
solution for oscillatory instability problems and thus improves system stability. Small signal stability is the
system ability to maintain synchronism when a small disturbance occurs. This study provides an analysis of
the small signal stability of the power system under different system conditions and operating loads. Several
simulations have been done to show the effect of the line parameters on the power system oscillations stability.
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INTRODUCTION

Power systems are capital intensive big complex
systems. In general in a modemn interconnected power
system, transmission lines are under-utilized and
uncontrolled. That are more heavily loaded then ever
before to meet the growing demand. The dynamic stability
categorized two sub-classes: small signal stability and
transient stability. Small signal stability analysis using
linear techniques provides valuable information about the
inherent dynamic characteristics of the power system and
assists in its design. Among the various methods of
damping of power system oscillations, excitation control
1s one of the most common and economical method. PSS
15 added to excitation systems to enhance the damping of
electric power systems during low frequency oscillations
(Gupta et al., 2003).

The PSS 1s a control device to inprove the stability of
the system by introducing a supplementary signal to an
Automatic Voltage Regulator (AVR). The AVR is an
exciter control device which maintains the termmal voltage
of the generator at a constant level. A dynamical model of
PSS is included to investigate the effect in providing
positive  damping  to undamped
electramechamecal modes. In some cases, PSSs are used as
an additional control feature so that excitation system
with a high response may be used without compromising
the small signal instability of the generators.

Power system stabilizers have been shown to be
effective in stabilizing the modes where there are different
oscillation frequencies. PSS have been used for many

overcome the

years to add damping to electromechanical oscillations.
To design a PSS with better performance, several
approaches have been applied to PSS design problem and
many useful results have been published. These include
pole placement, He optimal control, adaptive control,
variable structure control and different optimization
and artificial intelligence techniques (Abdel-Magid et al.,
1999; Shoulaie et al., 2009; Gibbard et al, 2004
Hasanovic et al., 2004).

According to Lee and Park (1998), to tackle the
problem of the unmeasurable state variables in the
conventional SMC, three kinds of controllers have been
developed and the PSS has been applied for a small-signal
stability study. In (Mrad et al., 2000) an adaptive fuzzy
synchronous machine PSS that behaves like a PID
controller for faster stabilization of the frequency error
signal and less dependency on expert knowledge i1s
proposed. In (Shamsollahi and Malik, 1999) an indirect
adaptive PSS is designed using two input signals, the
speed deviation and the power deviation to a neural
network controller. In (Nambu and Ohsawa, 1996) a similar
linearization method without having to explicitly identify
internal rotor angle and resort to a single machine setting
is described. In (Tiang, 2009) the dynamic characteristics
of the proposed PSS based on synergetic control theory
are studied in a typical single-machine infinite-bus power
system and compared with the cases with a conventional
PSS and without a PSS. Two techniques for the tuning of
PSS parameters based on the integral of squared error

criterion and the phase compensation criterion are studied
by Bhattacharya et af. (1997).
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Modemn power systems are highly complex and
strong non-linearity and their operating conditions can
vary over a wide range. Operating conditions of a power
system are continually changing due to load patterns,
electric generation variations, disturbances, transmission
topology and line switching.

For small signal stability, the linearized system model
is acceptable. The dynamic equations governing the
performance of the single machine infinite-bus are
non-linear. They are linearized about an operating point
for small signal stability studies.

This study presents a newly developed linearized
block diagram of a power system with a PSS which
represents the dynamics of power system. The analysis of
the performance of PSS under different system conditions
and operating loads was described.

The simulation results show the effects of the
transmission line parameters and line model on small
signal stability.

MATERIALS AND METHODS

Transmission line model: A transmission line is a crucial
link between power generation units and distribution
units in consumption areas. In this study, it is considered
that the transmission line parameters are umiformly
distributed and the line can be modeled by a two-port,
four-terminal networks as shown in Fig. 1.

Figure 1 shows the actual line model where Ug; and I
are the sending-end voltage and current and Uy and I
are the receiving-end voltage and current. The relation
between the Sending End (SE) and Receiving End (RE)
quantities can be written as (Chen ef al., 2006):

{USE B {A B {URE
ISE c D IRE
Where generalized circuit constants (ABCD) of a line

of length a are parameters that depend on the
transmission line constants and given by:

(1)

A =D = cosh(va)
B= ZC sinh(ya) (2)
C = ——sinh(ya)

Where:
Ze
Y

Characteristic impedance of the line

The line propagation constant
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Where z is series impedance per unit length/phase and
y 18 shunt admittance of per umt length/phase. The
maximum power transferred by a line can be increased by
decreasing either the characteristic impedance or electrical
length or both. TAD -BC =1 and A =D, the currents at
the SE and RE of the line can be written as:
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Where, A = A/q and B = B/P. The total series
inductance  determines  primarily the maximum
transmissible power at a given voltage. The shunt
capacitance influences the voltage profile and thereby the
power transmission along the line. Reactive power cannot
be transmitted over long distance; therefore reactive
compensation has to be effected by using various
devices. The parameter and variable of the transmission
line such as line impedance, terminal voltage and voltage
angle can be controlled by FACTS devices in a fast and
effective way.

Study system and mathematical model: A simplified
dynamic model of power system is considered in this
study. As shown in Fig. 2, this model is consisted a single
synchronous generator mcluding the voltage regulator
and exciter connected through a transmission line to very
large network approximated by an infinite bus.
Synchronous generators are normally equipped with AVR
which continually adjust the excitation so as to control
the armature voltage. The excitation voltage Er 1s supplied
the exciter and is controlled by the AVR. The torque angle
9 is defined as the angle between the infinite bus voltage,
Uy and the mternal voltage of quadrature axis, B'|. The
equal parameters between bus T and bus B are A, B, C
and D, so that:
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Fig. 2. A single machine infinite bus power system with phasors diagram (a) Power system configuration (b) Voltage

phasor diagram
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Where Y, 1s admittance of shumt load in generator bus, Resolving mto d and g components gives:
Y, is admittance of shunt load in bus M and
AyBLCDyjand A;BCDy, are line parameters in u, = ﬁsin {(+ o)+ Eid cos{f— o) —Eiq sin{fi — ot} ()

section 1 and 2. The stator algebraic equations are
expressed as:
u,= %cos(éﬂ o)+ %id sin(p—o)+ %iq cos(pfp—o) (10)

U,=Using =X i, - R,i, ©)
U, =Ucosd =E, - X,i, R, i, The armature current compenents are:
Where: LU
&, = The angle between the terminal voltage (1) i,=Y,E, 72—2I‘{K sin{+ ) + X, cos(d+ O(.)j| (11)
and the mternal voltage £
X, = The direct axis reactance LU B
X, = The direct axis transient reactance i,= Z—EI‘{XEI sings + ot)fK cos(B+ 5)} +Y,E, (12)
X, = The quadrature reactance v
R, = Armature resistance Where: ]
i;andi, = d-and qg-axes stator current Y, = chosot;szsmoc (13)
ZE
The electric power 1s:
Y, = X, sino +2R1 COSCL (14)
P, = (X, - Xii, + B, () Zs
The network constraint equation for the system is: Zy =Ry Ry + X X, (13)
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R, = Beosp X, Dsina. + R, Dcosa, (16)
Ry, =Beosp-X Dsina+ R, Deosa (17

Xp =Bsinp+ X Deosa+ R, Dsina (18)

XEzzgsinB+X'dcosoc+RAsinoc (19)

Zi= (D) + DO X, Jsin(B o) (20)

. B
+ XX, + 2R, Bcos(B —a)+R;

The 1nitial torque angle, currents and voltages of the
system in the steady state are &, Ip,, L, L., U, U, and
U, The variation of the d and q armature windings is:

Aly = Y, AE + F, A8 (1)
Ai, =Y, AE_ + T, A3 (22)
Where:
F,= _U—f(REz cosd, — X, sind,) (23)
ZE
U, . 24
F, :Z_Z(REI sind, + X, cos 8, ) (24)

E

The non-linear differential equations of the single
machine infinite bus power system are:

EBzcx)na) (25)
dt
d 1
E(ﬂ = E(PM - PE — KD (D) (26)
Qe e LB (- (27)
I q—?[ P By (X - X1,
do
EEF:T_[_EFJ'_KE(UR_UT)]
E

In the design of power system stabilizer for improving
the dynamic stability of power system, linearized
incremental models are usually employed. Basic linear
differential equations describing dynamics of the single
machine mfinite bus power system are:

4 as-= o, A (29)
dt

iAmzngﬁfﬁAmngE‘+lAPM (30)
dt ] ] LA |

d, .. 1 ‘
EAELI = TTO[AEF ~K,AE, ~ K,A8] (31)

9 AR, :TL[KEAUR C K KLAS—
E

dt (32)

K K,AE, - AE,]

The characteristic equation system without PSS is
given by:

K
A(s)=5"+ —‘3+L+& s+
T I

do E

K, + KK, T Ky (T;u +KTp) N o, K oy
T, T, IT, T, i)

(33)
®UK1 (T;u + KBTE) K2K40‘)u + KD (KB + KEKﬁ) g+
IT,T, T, IT,T,
62}
= [K1 (K3 + KEKs ) - Kz (K4 + KEK5 )]
IT, T,

The sensitivity constant of model power system are
derived by small perturbation analysis on the
synchronous machine equations and hence are functions
of machine parameters and operating conditions. Small
perturbation transfer function models of the synchronous
generator equipped with an exciter and regulator voltage
shown in Fig. 3.

The coefficient K, 1s normally positive. The constants
K.. K;, K, and K are usually positive, however K, may
take either positive or negative values. Constant K, and
K, are derived from the electric torque expression, K, and
K, from the field winding circuit equation, K, and K; from
the generator termimal voltage magnitude. These
constants are functions of system parameters and the
initial operating condition and given by:

K, =F[E,+ [, (X, - X+ FL,(X,-X,) G

K, =1, + Y, [E, + 1, (X, - X+

(35)

Y, L (X, - Xy
K, =1+(X, - X)Y, (36)
K, =F(X,-X,) (37)
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Fig. 4: Block diagram of a supplementary excitation control
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Power system stabilizer: Power system oscillations are a
characteristic of the system and they are inevitable. Power
system oscillations are initiated by normal small changes
in system loads and they become much worse following
a large disturbance. The AVR can inject negative damping
mto the system at high power loading, leading power
factors and large tie-line reactance (Rajkumar and Mohler,
1995). This so-called negative damping may be eliminated
by ntroducing a supplementary control loop known as
the power system stabilizer. The basic function of a PSS
is to extend the stability limits by modulating the
generator excitation to provide damping for the rotor
oscillations of synchronous machines. The PSS can
enhance the damping of power system, mcrease the static
stability and improve the transmission capability. Two
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Fig. 5: Block diagram of the SMIB with PSS and AVR

distinet types of oscillations are already identified: local
mode oscillation and inter-area mode oscillation (Jiang,
2007). Local mode are largely determined and influenced
by local area states. Usually, PSS 13 designed for damping
local electromechanical oscillations. The PSS output is
added to the difference between reference and actual
value of the terminal voltage.

The design goal of PSS is to improve the damping
torque coefficient with the least influence on the
synchromzing torque coefficient by adding the PSS signal
to AVR. A diagram illustrating the principle mode of
operation of a P35S 1s shown n Fig. 4, where the generator
speed deviation (Aw) from that synchronous frequency
1s mput signal. A PSS 1s directly connected to the AVR of
power system synchronous generator. The block diagram
of the SMIB system with PSS and voltage control loop
shown in Fig. 5.

The task of the PSS is to add an additional signal U,
(output from the PSS) into the control loop which
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compensates for the voltage oscillations and provides a
damping component that 15 mn phase. The washout block
is a high-pass filter with a time constant high enough to
allow signals associated with the speed oscillations to
pass through unchanged (Machowski et al., 1998). The
signal washout block serves as a ligh-pass filter. By
choosing a large Ty value, the washout block will not
have any effect on gain phase shift at the oscillating
frequency.

The lead-lag network provides the appropriate phase-
lead characteristic to compensation the phase lag between
the exciter input and the generator electrical torque
(Abdel et al., 2000).

The goal 1s to eliminate phase lag as best as possible
throughout a wide rang of frequencies of interest, then
adjust gain as outlined below. The stabilizer gan K,
determines the size of that contribution. A gain high as
practicable 1s required for best contribution to system
damping.

The gain K; is adjusted to obtain the desired damping
for unstable or poorly damped modes. The time constants
T, T, are usually prespecified. The remaining parameters,
namely time constant T, and stabilizer gain K ,are
assumed to be adjustable parameters. The PSS frequency
characteristic is adjusted by varying the time constant of
systerm.

Typical range of the optimized parameters are 0.06-1
for T, and 0.001-50 for K. The time constants Ty and T,
are set as 5 and 0.05 sec, respectively (Abido, 2002). For
the system with PSS, the new state vanable vector
becomes (Shahgholian ef al., 2007):

X =[A3 Ao AE, AE; (40)

AU, AULT

In this case, the equation describing the AVR can be
written as:

—A

" ~ KK A8~ K K AE, —

1
Ep ZE[KEAUR (41)

AE; + K AU,

The dynamic of the PSS can be expressed by the
following differential equations:

d K_K KoK

LAU, = A et py

dt I (42)
K. K . 1 K

E
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The characteristic equation system without PSS is
given by:
As)=s"+a,s’ +a,s" +

(44)
a,s’+a,s’+a,;s+a,
Where: a, = & 1 1_+ 1 (45)
Tdn TE TW TZ
K, 1 [ 1 KBM 11 J
T,T, T,T, \T, T, )|T, T, (46)
KoK, oK
T, T, J
1 LK
a, = —t— 3|+
TduT E T Tlin
11 KK TR, (47
Tdu T, T,) IT,TT,
KKo, Ko, [K 11 J
R Tt
IT,, JAT, T, T, T,
o K| K, 1 1 kY11
a, = — |l —+ =2 =—+— |-
I LTda T, TgTy T, T, Tz Ty
Ko ) Kyf 1 1 1) KR (48)
TAT AT, Ty T,) T,Tg
K, KoK, KKK,
T;DTETWTZ TI;DTE JTZ
K, { 1 1 1 }
— + + +
Ko, T \TeTy  TT, TT,
=
! &[L LJ
TdnTE TW TZ (49)

Ka{l 1 Kj
o K, T,TL\T. Ty Ty,

I RE, 11
TullnTE TZ TW

1 1
— [+ — =+
j TETW[TZ
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0 —

T T.T,T, T.T

do "E "W 2 do “E

_ oK | K+ KK, : KKK,
I LTI,

(50)

oK, |K, KKK KK,
IT, T,T, | Ty J Ty

A necessary condition for stability of the system 1s
that all the roots in equation characteristic have a
negative real part which in twn requires that all
coefficients (a,, ..., a;) are positive.

The natural modes of system response are related to
the eigenvalues. The real component of the eigenvalues
gives the dampmng and the mmaginary component gives
the frequency of oscillation

RESULTS AND DISCUSSION

Table 1 shows the parameters of the SMIB system
used in digital computer simulation to venfy the
performance of the proposed control scheme. The effects

Table 1: Data of the SMIB system

of the line model on sensitivity constant of linear model of
power system are shown in Table 2. The steady state
operating pomts of the model power system with
normal leading are Uy, = 0.7234, U = 0.6905,1,, = 0.5754,
[,,=0.4110,U,, = 0.7088 and 9, = 64.879%".

The effect of line model on system damping with and
without PSS for normal loading 1s shown in Table 3 and 4.

Without PSS, the system was slightly damped
because its dommant poles were close to the imaginary
axis in the complex plane.

The damping ratio determines the rate of decay of the
amplitude of the oscillation. The damping ratio of the
mechanical mode 1s improved as it changes from
0.0963-0.5972 with short model to 0.5858 with medium
model and to 0.5824 with long model.

The selection of the washout time constant Ty
value depends upon the type of modes under study
(Awed-Badeeb, 2006), the Ty, does not have a significant
impact on the complex mode correspond. The effect
of PSS gain on system damping for normal loading
15 shown inTable 5.

Parameters Values The damping ratioc of the mechanical mode is
ge“emt"r L6 changes from 0.6274 at K, = 10-0.5934 at K, = 30. Also, the
X 1.81 damping ratio of the electrical mode 1s changes from
Xy 0.30 0.4418 at K, = 10- 0.2716 at K= 30.

iT{D Z gg Therefore, an mcrease in the gain K; decreases both
Tae 8.00 the natural frequency and the damping ratio of system
f o 60.0 mechancal mode. Conversely, mcreasing the gamn K
Power system stabilizer

T 0.8

T, 0.1 Table 2: Sensitivity constant of model power systemn for line different
Ty 10 maodels

Kp 20 Short line Medium line Long line
Automatic voltage regulator Constants model model model
Ke 50 K 0.7094 0.6773 0.6675
Te 0.01 K, 1.2019 1.1965 0.1948
Transmission line K; 2.4005 23541 2.3402
R 0.113 Qkm™ 11071 1.0595 1.0454
L L618<10°Hkm™ g, -0.0495 -0.0462 -0,0450
C 8.488<10°Fkm™ K, 0.6733 0.6897 0.6944
Viez BOKV &, 64.8799° 64.9242° 65.2088°
Stase 200 MVA Up, 0.7088 0.6335 0.6303
Line length 300 km

Shunt load Table 3: The effect of line model on system eigenvalues without pss for
G 0.3 normal loading

B . 0.3 Short line model Medium line model Long line model
Loading normal

Up, L0 -95.5844 -954733 -95.4406

P, 0.9 -4.12630. -4.26080. -4.30250.

Qe o1 -0.5804415.9996 -0.5658+)5.8563 -0.560445.8127
Leading power factor

U, L0 Table 4: The effect of line model on systermn eigenvalues with pss for normal
P 0.7 loading

Qe:D 0.3 Short line model Medium line model Long line model
Line length (ki) 300 -97.6702 -97.5577 -97.5244

Base in line -0.1015 -0.1015 -0.1015

Vi BOKV -1.50092.0160 -1.463142.0241 -0.1.451 62,0262
Stace 200 MVA -5.0990r14.2435 -5.1901414.1796 -5.21744i14.15%4
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Table 5: The effect of PSS gain on system eigenvalues for normal loading

K Without PSS 10 20 30
Mechanical mode -0.58044j5.9996 -2.13904j2.6551 -1.50094j2.0160 -1.24934j1.6946
Electrical mode -4.1263, -95.5844 -4.9709+j10.0950 -5.0990+)14.2435 -4.8619+j17.2304

Control -

-0.1007, 96.6511

-0.1015, -97.6702 -0.1022, -.98.6468

Step response
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Rotor angle (rad)

T T T
1 1.5 2 25 3 35 4
Time (sec)
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45 5
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Fig. 7. Effect of gain K, on generator terminal voltage

Step response

Without PSS

Output electrical power

0 - T T T T T T T T T 1
0 02040608 1 12141618 2
Time (sec)

Fig. 8 Effect of gain K, on output electrical power
mcreases the natural frequency and decreases the

damping ratio of system electrical mode. The step
responses with different of gain K, for normal load are
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Synchronous generator

Rotor speed (rad sec™)

-0.02
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Fig. 9: Effect of gain K, on rotor speed — load angle

shown in Fig 6-9. From the simulation results of the
mathematical model, it is inferred that the damping of the
power system 1s improved with the help of PSS. We can
see that with the addition of the PSS, the system has
become very stable.

CONCLUSION

Power system stabilizers have been thought to
improve power system damping by generator voltage
regulation depending on system dynamic response. The
PSS is a supplementary control system which 1s often
applied as part of excitation control system. This study
proposes a lmearized block diagram of a power system
with a PSS and the performance of the PSS controller for
the damping of oscillations ina SMIB using small signal
model.

For power system dynamic researches transmission
line 1s modeled using the parameters of line. The transfer
functions are studied using Matlab and the step response
verified by time domain simulation.
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