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Abstract: This study briefly sets out a 3 and more state reliability description of combined heat and power
generating units (of extraction condensing and back-pressure steam turbine power plant units). The new
procedure improves the accuracy of system-level reliability (Ioss of Load Probability (LOLP)) calculations for
power generation systems by giving a more differentiated (and thus more accurate) description of the available
capacity from extraction condensing and back-pressure turbine power plants. Applying the 3 or more state
reliability model for power plant units with extraction condensing and back pressure turbine and the deduction
of the reliability calculation’s input data form the novelty of the newly developed calculation method.
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INTRODUCTION

For the purposes of calculating, the reliability of
power generation systems, combined heat and power
plants have hitherto always been modelled as must-run,
quasi-must-run or aggregated power plant units. In many
cases, the capacity of co-generated power plant units 1s
simply subtracted from the system-level power demand.
This mnplies a two-state reliability model 1.e., mcorporation
of the available capacity of cogeneration power plant
units without regard to capacity reduction due to heat
output. The two-state reliability model states that the
power plant unit is either operational with full capacity or
non-operational with zero capacity. The two-state
reliability description of power plant units only produces
a result of satisfactory accuracy if the modelled power
plant umts have a high annual operating time are in
operation for most of the year. Tt is clear without further
explanation that the two-state reliability model gives a
very rough approximation of the real operation of
extraction condensing and back-pressure power plant
units which co-generate heat and power. There are
basically two reasons for this. Fustly, the ammual
utilisation of these power plant units, although
considerably greater than that of peak-operation units 1is
considerably less than that of base-load units. Secondly,
cogeneration requires that for a certamn portion of the
operating period, extraction condensing and back-
pressure steam turbine power plant units make less than

therr nominal capacity available to the power system.
Consequently, the two-state reliability description is not
suttable for differentiated reliability modelling of
cogeneration power plants. This situation is not remedied
by an attempt to incorporate heat output-induced
capacity loss using some kind of average figure for the
whole period (heat output shortfall (MW)).

The differentiated reliability description (3 and more
state reliability modelling) of extraction condensing and
back-pressure power plant units is made possible by
determining for each power plant umt, the distribution
function for the probability of occupation of its operating
states. A precondition for the 3 and more state reliability
description of power plant units, therefore is knowledge
of the distribution of the occupation probabilities of all
defined operating states (during the period of study). The
two-state reliability description assumes that the power
plant unit exclusively occupies either the failed, zero
capacity or operational at full capacity operating states.
The discrete probability distribution function required for
the two-state reliability description may be defined from
the fault statistics of each power plant unit. The three and
more state reliability description calls for statistical data
which is not available in the great majority of cases. The
control technology of extraction condensing and back-
pressure power plant units, however is such that their
current available maximum power capacity 1s a function of
the average daily ambient temperature because the
majority (80-90%) of these units operate as heat sources
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for heating systems and this makes possible their three
and more state reliability description. It should be
stressed that the novelty content of the newly developed
calculation method lies not in the fact that the
instantaneous maximuim available power capacity of these
power plant units is a function of instantaneous heat
output and therefore of average daily ambient temperature
but m the recognition that this relationship permits their
three and more state reliability description by virtue of the
desired random variable of the maximum available power
capacity (¥ipems) being a transform of the random variable
of the ambient mean air temperature (C.). This permits
calculation of the probability of occupation of each
defined operating state (in the test period).

Determination of the discrete probability distribution of
the maximum available power capacity in the case of
extraction condensing and backpressure steam turbine
power plant units: Extraction condensing and back-
pressure power plant units obey the relation:

Lppue = £ (Q(T, ) (1)

Here, ¢ ((MW)) is the current heat output of the
power plant umt. The ambient temperature and
consequently, its daily average vary randomly in time. In
the description of this random process, event space £, is
filled by event elements E; Qp = {E, E,,.., E, . E} Bvery
event element E occurs when the daily mean ambient
temperature (T,) falls in the range (T, .,, T, ;) (Roberts,
1964). The probability distribution of the daily mean
ambient temperature i1s known for each geographical
point. This means that in a given geographical region in
the average over a specific period, the probability of
occurrence of each temperature ie., for each possible
value of the random variable C,. The distribution
function 1s defined as:

F, (T,)=P (G <T,) (2)

Extraction condensing and back-pressure steam-
turbine power plant units operate as heat sources for heat
consumers whose instantaneous heat demand changes in
proportion to the daily average ambient temperature as
shown in Eq. 1. The power plant umt heat output is
defined by the relation:

Qi =f (Tk,i) (3)

The maximum power output of extraction condensing
and back-pressure power plant umts 15 a function of
current temperature i.e., obeys the relation:
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L ppamens = T(Q)) )

Consequently, instantanecus available power

capacity (maximum possible power output at the given

heat output) varies with daily average ambient
temperature as follows:
Lpmes = (Tii) (5

Tt is thus, possible to determine the related quantities
Typr @ and Ly, 1.e., for the occurrence of random event
E,, the resulting values of Q, and Lppy., ; may be obtained.
Analogously, the randem variable C,, may be used to
define the power plant heat output random variable wsand
the power plant maximum power output (maximum
available power capacity) random variable ¥z, From
relations to Eq. 1, 3, 4 and 5:

Mg = 0 (G, ) (6)
Lippma: = Kippma (©g) (7)

and finally:
Lippma: = Kippma (S ) (8)

This means that the power plant heat output random
variable w, and the power plant maximum power output
(maximum available power capacity) random variable
¥ 1mme @T€ both transforms of the daily average ambient
temperature variable Cr.

The probability distribution of each random variable
and its transform may be determined from the following
theorem (Roberts, 1964; Hall ef al., 1968): if £ is a discrete
random variable whose possible values are the numbers
X, Xpo and y = 1 (x) is an arbitrary function, then the
distribution of the random variable 1 = (£) is defined by
the probabilities:

Pn=y,)= 2, PE=x) (k=12.)

Tz )=y

©)

Where vy, y,,... are non-equal values of r (x,), r (x;)
This follows from the fact that an event 1 = ¥, occurs if
and only if the value x taken by £ 1s the value for which r
(%)) = v (Galloway et al, 1969; Endrenyi, 1978,
Armstadter, 1971). Clearly:

> PM=y,)=1 (10)
k

In general, therefore, it may be stated that:
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=L

2

Lrpamme (Thei )= L roaser

Ploy =T (r=12.)

PPmax_r) =

P(XLPPmaX

(1)
This statement may naturally also be expressed for
the heat outputs, in which case it takes the form:

P(o,=Q)= > Pl =T, (r=12.) (12)

Q(Tii)=0r

Deduction of the discrete probability distribution of the
maximum available power capacity: Where T, (°C)
represents the daily average ambient temperature and t,
(°C) 13 an arbitrary temperature value, D (t,) () gives the
duration within a test period when the relation T, >t, holds
i.e., the number of hours during the reference period when
the daily average ambient temperature is greater than or
equal to a specified temperature t, (°C). The duration
diagram of the daily average ambient temperature for the
period under examination may be determined from
meteorological statistical data for the given geographical
location. The daily average ambient temperature duration
diagram for a given period may be rendered into a daily
average ambient temperature random variable via a multi-
step transformation. The first step is to transform the time
values on the abscissa into relative time values. The
values on the abscissa of the resulting diagram may be
viewed as probabilities that the daily average ambient
temperature is greater than or equal to the corresponding
daily average ambient temperature value 1.e., the
probability P (T, 2t,). The second transformation step 1s to
exchange the abscissa and the ordinate (Endrenyi, 1978;
Billinton and Allan, 1984). This puts probabilities on the
ordinate and daily average ambient temperature values on
the abscissa. The cwve obtained from these two
transformations may be viewed as the complementary
curve of the distribution function (Billinton and Allan,
1992) of the random variable T, 1.e.,

d(tk)zlfFﬂ((tk) (13)

In this relation,

d(t) = Therelative duration [-], when T, =t (D (t.)/T

Fre(to) = The probability distribution function of
random variable T,

T = Reference time interval (h)

Tt follows that the probability distribution function
of random variable T, is defined by the relation:

Fy(t)=1-d(t,) (14)
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And this gives the relative duration in which T, ;<T,.
The relative duration may be viewed as a probability.
Then, the relative duration is equivalent to the probability
that T, =T, 1e.,

F, (t,)=P(T, <t,) (15)

Fy (t) = P (T, i<t,) and so gives the probability that
the daily average ambient temperature (T, ;(°C)) is smaller
than t,. The relation thus defined may be proved to satisfy
the requirements of a distribution function.

Reliability description of extraction condensing and back
pressure steam turbine power plant units using state-
space method: Reliability modelling of power plant units
using a state-space description method wmvolves
characterising each power plant unit or power plant
system (power plant umits in the power plant system) with
defined operating states and probabilities of transitions
among these states. For reliability purposes, the states of
a power plant unit or power plant system are given in
terms of the probability distribution of the operating
states which power plant units constituting the power
plant system may occupy at a given time (Billinton and
Allan, 1984, 1992; Billinton, 1982). The state of the system
or operating state of the power plant unit at a given time
is clearly defined if the probability distribution of possible
operating states and system configurations are known for
that time (Liu and Singh, 2010; Dehghani and Nikravesh,
2008). The operating states which are customarily defined
include operational at full capacity, failed (non-
operational), operational at reduced capacity m reserve
failed in reserve, etc.

Calculation of the availability and failure factors: For
extraction condensing and back-pressure steam-turbine
power plant units, the availability factor for each
operational operating state (*K, (-)) may be calculated as
the time of occupation of each operational operating state
as a proportion of the total reference period. This relative
time may be determined from the probability distribution
function of the maximum available power capacity and
represents the probability that at any time the power plant
unit occupies that operating state.

The availability factor for all of the power plant unit’s
operational operating states may be determined with the
constraint that the periods of occupation of the
operational and failed operating states add up to the total
reference period. The failure factor (*kp (-)) may be
calculated m the usual way (Billinton and Allan, 1984,
1992; Billinton, 1982). Extraction condensing and back-
pressure steam-turbine power plant units obey the
following relations:
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T4 °T, =T (16)
1=1
g Tw_ Ty
U1 d T d-1 g B
PCL bp s s = X opmen < Lopp ma e )
= FxLFFmax (LPPmaX,Uif )- FxLFFmax (LPPmax,Um )
3 3
‘K, :%:751_1 L (18)
(Z ")+ Ty
i=1
In the foregoing:
d = The number of possible defined operating
states (-)
T = The duration of occupation of the ith
operational operating state (h)
Koy = The availability factor for the ith operational
operating state (-)
T = The duration of occupation of the failed
operating state (h)
i = The failure factor for the failed operating
state (-)
T = The total duration of the reference period (-)
L v e = The lower limit of the output range of the ith
operational operating state (MW)
Lz e = The upper limit of the output range of the

1th operational operating state (MW)

Determination of the average power output: A further
important item of input data for LOLP computations is the
average power capacity for each defined operational
operating state (Lgy (MW)). The principle of
determination this average power output is as follows: the
principle of calculation of the average capacity for each
defined operational operating state 1s that the electrical
energy actually output during occupation of a given
capacity range should be equal to the energy output
calculated with the average value.

The average power in the kth operational
operating state (Lg ., (MW)) is the probability of
occurrence-weighted sum of power values in the
operating state:

Z p1 L PPmax,i

12 Gy,
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divided by the sum of the probabilities of the power
values:

2P

16y,

CONCLUSION

The question naturally arises as to how much the
newly-developed procedure improves the accuracy of
computation. Experience has shown improvement in
accuracy of 10-30%. The greatest improvement 1s found
in cases where there are considerable temperature swings
during the test period.
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