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Abstract: The aim of this study is to treat the electro-magneto-thermal coupling applied to a induction heating
system. The voltage feeding makes the present study very interesting especially in the transient thermal regime.
The most delicate study of this problem means the treatment at the same time of four physics aspects: the
electrical equation of the inductor, the electromagnetic equation in the load, the equation of the thermal in
transient or permanent regime and sometimes one may add the fluid flowing equation. The non-linearity and
complexity of the equations system thus obtained require the use of numerical methods to solve it. A software
tool on the base of the fimte difference method coupled with a semi-analytic one has been developed. We show
that, the evolution of the dissipation active power and its effects on the temperature and the impedance along

the time of heats.
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INTRODUCTION

In order to realize representation model of the studied
device, a precise knowledge of the spatial and temporal
distribution of electric and magnetic fields and the
temperature is required. This knowledge is obtained by
the resolution of the partial derivatives equations
describing the physical phenomena. The electromagnetic
model gives to the thermal one its source, which is the
Joule effect of the Foucault currents. On the base of the
temperature fleld thus obtamed, the new values of
electromagnetic coefficients are computed. So, this cycle
is restarted again until convergence of a number of
criteria. In the solid state of load, we consider that the
transport term has no sense and we study the problem of
no stationary conduction. Tn the case of the fluid load for
which the heating phenomenon 1s very fast regarding to
the other time delays of the system, we consider the
stationary regime (Vinsard, 1990; Mekideche, 1993).

Several researchs have been published concerning
the magneto-thermal coupling in feeding by current
to know Bleuvin (1984) and Feliachi and Devely (1991)
that presented a Direct Coupling Method (DCM) of
these phenomena. But the device feeding by current
source remains always an incomplete model, because it
excludes the true electromagnetic coupling between the
inductor and the load. To give an approach of a more real
coupling, a model fed by voltage 1s developed in
collaboration with L2ES laboratory of Belfort (French).
This model 1s applied to the axisymmetric devices. It
permits to determine the most sensitive points; the

total impedance, the power density transmitted to the load
and the temperature of a simusoidal voltage supply.

MATERIALS AND METHODS

Mathematical model: For the device, the mductor shows
the energy source that includes a set of turns on, which
we apply a simnusoidal voltage. The proposed model
consists in formulating the Maxwell’s equations and the
Ohm’s law for each elementary turn for a given meshing.
So, we obtain a voltage equation in term of vector
potential as:

RotE-2 (1)
ot
RotB=ulJ (2)
DivB=0 3)
B=rotA ()
j—c{grﬁdu+ 6—AJ (5)
ot
Where
E,B = The electrical magnetic fields
i = The cwrrent density vector
A = The vector magnetic potential
0 = Theconductivity
p = The permeability
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Knowing that in axisymmetric case and in cylindrical
coordinates:
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We obtam the final expression of the voltage, for
every elementary turn: according the current density, the
magnetic vector potential, the resistivity and the radius
with regard to the axis. It is given by the Eq. &

u—2nr(lJ+ic—)A] (6)
4]

with, w is the voltage pulsation and i* =
Moreover, we may establish the expression of the
vector magnetic potential creates by a spindly tumn

(Durand, 1968):
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We notice that Eq. (7) gives the magnetic vector
potential n a point (3, j) produced by an elementary
current located at the node (k, 1). The formula can be
generalized by adding all the effects of the current loops.

The electromagnetic phenomena appearing in
electrical engimeering devices (particularity in the load) are
described by Maxwell’s equations and the three relations
of the considered region. By assuming the load without
movement, the space charge density and the currents of
displacement may be neglected. The formulation through
the magnetic vector potential reduces considerably the
system size and the hypothesis of Coulomb’s gauge
becomes naturally verified (Melkideche, 1993) and we
obtain the Eq. 8 and 9:

divA=0

aA
+6—=0

Rot [l rotA (8)
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By choosing an adequate cylindrical coordinates,
the gradient of the scalar potential vanish and magnetic
vector potential depends only toé, direction So, the
Eq. 8 becomes:
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For thermal equation in the load, considering
Fourier's law by applying the first thermodynamics
principle in an elementary volume (V), the equation of the
conduction with term of velocity may be given in its
general shape:

pCp%:diV(Kgréd(T))—pCp\?gréd+P (1
Where
p = The mass density
C, = Specific heat
K = Thermal conductivity
va = Velocity of displacement of the volume with
regard to the thermal sources
Pa = Field source
T = The searched field of temperature

In the case of the solid loads, the term of velocity is
non-existent and the equation of the transient regime will
be as Eq. 12

(12)

°or -
pC, a =div(Kgrad(T))+ P

The power density generated by the Joule’s effect of
Foucault’s currents in the heated load is given by the
Eq. 13

P= %G@ZAA* (13)
With
A*

The complex conjugated of A

Numerical models: For the working convenience, we
firstly treat separately each bloc of the studied system
and each phenomenon Afterwards, we combine the
different parts to get the final computation code.

Numerical model of the inductor: Considering an
inductor contaimng N, turns, each one 1s subdivided in n
elementary tums. In a discretization point k, the Eq. 6 has
the following form Eq. 14:

The expression of the vector magnetic potential

B

N,
> A 4

1=1 =1

U, =2ng k[lek +im

between two nodes 1s given by Mostaghimi and Boulos
(1988) and Bleuvin (1984):

o ,r
Ay =1, G 2
2n I

(15)
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By adding all the effects of the current loops of all
the turns, the Eq. 23 may be generalized as Eq. 16:

M.on
[ "
Ai],ld :2_22 = Jklsleq,ld(k) (16)
Tire=1§ I
With,
él.rklr1J :
k: 2 2
(rk1+ru) +(Zkl _Zu)
2k Flo-2.Ek
s 2K (k> (k)
: 1
F{k) = j S ST
b \/1—1(2 sin’ ()

1s the elliptic mtegral of first kind

E(k):j,/l—kzsinz(e) 0

is the elliptic integral of second kind

For reasons of programming complexity of, we take
two interpolations of the following interpolations of the
funetions E(k) and F(k) (Stegun, 1972; Mekideche, 1993):

E (k) = 1+ 0.46301 51 M, + 0.1077812xM, +
(0.2452727 %M, + 0.041 2496xM,)*C

Fk) = 1.3862944 + 0.1119723 %M, + 0.0725296xM, +
(0.5 +0.1213478>M, + 0.0288729 M,)*C
With,

k@=1kiM2:Mfmdc:ug%%)

1

We notice that there are (N_xn) current unknowns
and we shall have the same equations number in order to
be able to resolve the problem. Thus, we add the current
conservation law between all the turns:

i‘lil:i]ﬂ:" : ':zn:LNs (17)
i=1 i=1 i=1

Afterwards, we express the total voltage of the
mductor by adding the all contributions of the main
turns:

(18)
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There are two approaches to solve this algebraic
equation system: the direct approach by substitution of
Eq. 16 in 14 and iterative one. We choose the second
method for following reasons (Bleuvin, 1984):

¢ Tts simplicity of application, even for the big size
systems

»  More converient in the no linear case

¢+ May be easily applied to the case of coupling with
other equations (the thermal and/or the fluid flowing
problems)

»  Offers the possibility to solve the problem block by
block (turn by tumn at the inductor on one hand, and
turns-load separately on the other hand)

The mconvenience of this approach consists on the
dependence of the calculation time on the unknowns
number. This Coupled Circuit Method (CCM) is easily
applicable especially in the loaded case. So, we have
just to add the induced curmrents effects on the
inductor that is to say the coupling element in the Eq. 16
that becomes:

Wl g8 Gk
ri 1,17 1 kl,uﬁ( )+
o p (19)

m M N r
= —5 18, Gy ()
211;1-2:1: rm’ﬁ B RS g VR

In Eq. 19, the first term is the same of Eq. 16 (without
load case) and the second term represents the coupling
element expressing the load presence.

Electromagnetic model in the load: We remark that the
use of the CCM can increase the time of calculation
especially when the mumber of unknowns 1s high In
addition, the calculation of the vector potential in the air
is not interesting and the problem resolution is not
necessary. Thus, we propose to use another method to
solve complete electromagnetic equations m both the
regions, the mductor and the load. In this research, we
use the mixed methodology: The Finite-Difference
Method (FDM) inside the load and the CCM in the
inductor and the load borders. The use of FDM in the
load alloys to write the Eq. 17 at any point (1, ) of the
domain:

At AL + At AL
. o n

1 1 1
fjhl(A“” —A,)

1+1,]

(20)

With, C, =C, (r;; h, h,, 0, w, p)
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We notice that the MCC allows solving the problem
of limits conditions by setting the condition A = 0 on the
symmetry axis. So, the rest of borders will be calculated by
using Eq. 20.

Thermal With  the way of the
electromagnetic modeling in axisymmetric case the Eq. 12
may be simplified in cylindrical coordinates as Eq. 21:

model: same

ar @
O = (k=4
PG o 8r( 8r)

ka 7(1< Typ @D
or 9z dz

The computation of the temperature T*' at the
mstant t + At and in the iteration (n+1), can be evaluated
by using the explicit or the implicit methods. Tn the
present study, we use implicit method, which doesn’t has
problem of instability. Then, we may choose the space
and the time steps without additional constraint. This
method is so unconditionally stable and duct to results
more precise than those obtained by the explicit method.
Thus, the equation for
point (1, ) 18 given by the Eq. 22:

n+1 n+l1 n+1
i1 {T et et }(22)

n+l
a,+a,+a, aTJ+1+aTlJI+P

conduction every interns

With a, are the positive constants.
The Eq. 23 must be solved with the following general
boundary conditions at the surface of the workpiece:

k(T b - Ty r T (23)

Where,

s,a = Denote surface and ambient temperature
h. ¢, = Convection and radiation loss coefficients
n = The outward normal to the surface

Finally in order to evaluate the thermal conductivity
at the node interfaces, we use a more correct approach
that consists in considering the adjacent elements as two
materials of different thermal conductivities (Patankar,
1989).

RESULTS AND DISCUSSION

In all heating problems, one tries to know the induced
distribution of current densities allowing characterizing
the heat dissipation in the piece from the knowledge of
the inductor and load characteristics (nature, form,
voltage feeding).

Figure 1 shows general diagram of the inductor-load
device. The cylindrical billet of steel is represented n an
axis systemn (r, 0, z) in axisymmetric case; the dimensions
are given in mm. The conditions to the thermal boundaries
and the physical properties of the load have been taken
by Bleuvin (1984) and the simulation data of the inductor
are;

s Voltage of feeding: u=25V
»  Working frequency: f=11kHz

Radial evolution of the temperature: Figure 2 shows that
at 10 sec (the starting of the heater), the temperature
increases quickly at the external surface of the billet.
Thus, a great gradient of the temperature appears between
the revelution axis and the external surface. At the time,
when the most heats outside points attain the transition
temperature, the sources density decrease and the
entropy of the device increase. On the other hand, the
maximal temperatures variation is low and the temperature
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Fig. 1: Diagram general inductor-load
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Fig. 2: Radial evolution of the temperature
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gradient is smaller more and more (Fig. 3-5). Atthe
end of the third phase of the heating, we notice an
inversion of the thermal gradient. The thermal losses
mcrease according to the temperature and the most
heats points are now located in the zone of the billet
center (Fig. 6).

Evolution of the dissipated power: At the heating
beginning (about 10 sec), the dissipated power 1s not
sensitive by the decrease of the electrical conductivity
(Fig. 7).

Moreover, according to the physical data of the load
and the work frequency, it can mcrease as well as
decrease. In present case, the resistivity increasing with
respect to the temperature causes a considerable fall of
the power until the moment, when the most external points
attain the curie temperature.

Finally, during the last phase of the heating, sources
of energies evolve slowly and the total power stabilizes to
a value relatively weak with regard to the one calculated
to the mitial temperature (27°C).
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Fig. 3: Radial evolution of the temperature
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Fig. 4: Radial evolution of the temperature

Behaviour of impedance: In Table 1, we show the
variation of mmpedance by the effect of the temperature.
A first comparison concerning  the
impedance between presence and without load at t = 0
{(without magneto-thermal coupling). We remark also
the increase of the reactance value, but the value of

value of
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Fig. 5: Radial evolution of the temperature
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Fig. 6: Radial evolution of the temperature
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Fig. 7: Evolution of the dissipated active power
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Table 1: The variation of impedance

Impedance (mg) Without load With load Time (sec)

Z=R+iX 4.562 +15.248 4.983 + i4.698 0

- - 4970+ i4.916 10
4.946 + i5.031 20
4880 +i5.117 40
4.830+15.171 100
4.805 +i5.195 =300

resistance decrease. So, it’s necessary to improve the
power factor, during the heating process, by using a pack
of capacitors.

CONCLUSION

An electromagnetic model and a thermal one as
well as a methodology for the solution of induction
heating coupled non-linear electro-magneto-thermal
problems. The originality of the proposed model 1s its
ability to take into account the induced reaction in the
mnductor and the magneto-thermal coupling mn the case of
voltage feeding. The developed computation code has
been tested at the sensible model points as well as
their coupling. A comparative study has been
realized on the magneto-thermal in the current feeding
case, with present model (Delage and Emst, 1984,
Bleuvin, 1984; Mekideche, 1993). So, the validity of
present software tool has been checked out. Thus, it can
be used to study most complex configurations and in the
case of a voltage feeding. The model constitutes a
powerful mean for the designer for command and optimal
inductor design.
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