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Abstract: The background scattering of plane electromagnetic waves by arbitrarily periodic shaped surfaces
1s investigated. The scattered waves will be assumed to propagate i discrete Floquet modes. Electromagnetic
fields are solved for first using the method of separation of variables and then expressed in a very compact form
by mntroducing the modified spherical vector wave functions. The scattered waves are obtamed using an exact
method or a simplified model based on Rayleigh's hypothesis. For the general treatment, we express the field
of the scattered waves m terms of the unknown value of the field and its normal derivative at the boundary, by
making use of the Green's functions. The proposed formula allows mathematically exact calculation of the near-

field, in the context of scalar wave theory.
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INTRODUCTION

The Scattering of Electromagnetic (EM) waves by
periodic surfaces has receiving considerable attention for
a long time (Millar, 1971; Kroger and Kretschmarmn, 1970,
Bennett  and Mattsson, 1999,  Ogilvy, 1991,
Beckmann and Spizzichine, 1963; Beckmann, 1967,
Nieto and Garcia, 1981, Marx and Vorburger, 1990,
Ishimaru et af., 2000, Rappaport and El-Shenawee, 2000).
Knowledge of the scattered fields 1s required m many
areas, such as investigations of the scattering of light by
small chemical and biological particles (Kroger and
Kretschmann, 1970) and the scattering of microwaves
by ramdrops (Nieto and Garcia, 1981). During the past
several decades, researchers in the areas of applied
electromagnetism and underwater acoustics have been
searching for rigorous and efficient models for
mathematically describing the problem of EM and
acoustic wave propagation over rough surfaces as well as
the scattering of those waves by such surfaces
(Bemmett and Mattssor, 1999).

Modeling low grazing-angle EM wave scattering
from periodic rough surfaces 1s a technically-challenging
problem. Quite a few methods have been used in the
analysis of different scattering problems (Bennett and
Mattsson, 1999). The popular Parabolic Wave Equation
(PWE) approximation model had been developed to
describe accurately the situations where the EM field or,
at least, the predominant part of it 1s propagating in one
direction, i.e. the forward direction (Ogilvy, 1991). In this
case, the specular scattered field is the predominant field
and scattering away from the forward (specular) direction
15 very small Two main formalisms of the PWE model
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described above; namely the PWE/split step approach
and the PWE/Volterra approach (Wong and Bray, 1988).
The so called PWE/split step model, can be used in both
homogeneous and slowly varying mhomogeneous media
(Beckmarm and Spizzichino, 1963). In this case, the PWE
is solved as an initial-value problem given an initial field
distribution on a vertical plane. On one hand, the PWE
model approximately accounts for the forward interactions
only. On the other hand, the PWE model does not
account for other types of surface field mteractions.

The second PWE propagation and scattering model,
to be called the PWE/Volterra model, is also derived by
setting up the boundary integral equation counterpart of
the PWE, which 1s of the Volterra type, 1s set up and
solved for the surface current induced by an incident field
on a rough surface m homogeneous media. This
formalism of the PWE model was proven to be more
accurate than the PWHE/split-step approach in general
(Beckmann and Spizzichine, 1963).

The Boundary Integral Equation (BIE) model was
developed to take into account for all kinds of surface
field interactions and the problem of propagation over a
rough surface as well as the rough surface scattering
problem (Nasir and Chew, 1994). In this model, an integral
equation of the Fredholm type, which governs the current
induced on the rough surface by all kinds of surface field
interactions, 1s derived on the basis of Helmheoltz
equation. This equation 1s solved for these surface
currents using numerical methods and the resulting
currents are then used in radiation integrals involving the
appropriate propagators to calculate the scattered field
everywhere in the medium. Distinct integral equations are
set up for the TE and TM cases.
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The applicability of the BTE model in a certain medium
15 tied to the feasibility of determimng the Green’s
function (propagator) of that medium. In homogeneous
media, this modeling 1s straightforward since the
homogeneous media propagator (Green’s function) is well
known (Chan et al., 1991). In inhomogeneous media, the
Green’s function is not readily known and hence, the BIE
approach 1s not straightforward.

To study more complex scattering problems, a matrix
formulation, which could be classified as an mtegral
equation method, was introduced early by Waterman
(Millar, 1971). This method, using a transition matrix to
relate the incident field and the scattered field, is usually
called T-matrix (transition matrix) method. A good
application of the T-matrix method using the vector wave
functions was mmplemented by Benmett and Mattsson,
(1999). The differential scattering characteristics of closed
three-dimensional arbitrarily shaped dielectric objects
were investigated. Recently, Li ef al. (1990) extended the
method and obtained the dyadic Green’s functions for
this scattering problem.

The T-matrix method is 1deally suited for analyzing
the EM scattering by nonspherical particles. Although,
the method is applicable to  arbitrarily-shaped
particles, it has been applied almost exclusively to
axisymmetric  particles, 1.e, bodies-of-revolution
(Rappaport and El-Shenwee, 2000; Wong and Bray, 1988,
Beckmann and Sizzichino, 1963).

A similar procedure based on the T-matrix method
was devised by Lakhtakia to study the EM response of
nonspherical chiral objects exposed to an incident field
(Ogilvy, 1991). The scattering problems involving
anisotropic obstacles are mostly restricted to planar
(or stratified) structures (Ko and Mittra, 1993, Balams,
1989), cylinders (Beckmann and Spizzichino, 1963;
Awadallah, 1998, Tappert, 1977; Toporkov et al., 1998), or
spheres (Beckmann, 1967).

The scattering of plane EM waves by periodic
(or grating) structures has been studied extersively by
either mtegral equation methods or variational approaches
(Bao et al, 1995). The techniques used in these
investigations rely upon the periodicity of the structure
and that of the incident wave, which allow the
reduction of the problem to one 1 a single periodic cell
bounded by a fimte part of the boundary.

The problem of scattering of waves from periodic
surfaces has been of interest to physicists, engineers
and applied mathematicians for many years because of
its large number of applications in optics, acoustics,
radio-wave propagation and radar techniques.
Chandler-Wilde and Ross (1995) established a
uniqueness result for the Dirichlet problem for the
Helmholtz equation in an arbitrary unbounded domain for
the case when the imaginary part of the wave vector, i,
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is positive, ie., Im f>0. In Chandler-Wilde and Ross
(1996) the same authors proposed an mtegral equation
formulation for the Dirichlet problem in two-dimension
and proved, by standard operator perturbation arguments,
in the case when the whole boundary is both Lyapunov
and a small perturbation of a flat boundary, that the
integral equation is uniquely solvable in the space of
bounded and continucus functions and hence that, for a
variety of ncident fields including an incident plane wave,
the boundary value problem for the scattered field has a
solution.

In this study, the problem under consideration is
a boundary wvalue problem, in which the EM vector
wave equation (partial differential equation) derived from
the Maxwell’s equation. The natural surfaces under
consideration mclude rough ocean surfaces and
rough terrain. Scattering of plane EM waves at the
periodically rough surfaces is formulated as a boundary-
value problem and solved using the method (Rayleigh,
1907). This method of approach is more appropriate than
the normal distribution method of approach m this case.
This 15 because the scattering 1s mitially denser than the
latest scattering. The Rayleigh hypothesis gives valid
results for smooth boundaries with corrugations that are
not too deep (Lakhtakia and Depine, 1993; Kazandjian,
1996). The limit of validity of methods based on the
Rayleigh hypothesis has been investigated for
impenetrable gratings (Millar, 1971; Hill and Celli, 1978),
gratings made of isotropic penetrable materials
(Popov and Mashev, 1987), electrically uniaxial materials
(Depine and Gigli, 1994) or  anisotropic absorbers
{Inchaussandague et al., 2003) and gyroelectromagnetic
index-matched, periodically corrugated interfaces
(Gigli and Inchaussandague, 2004).

The scattering problem m a 3D was formulated the
setting with the Dirichlet boundary condition, but the
method can also be used for the Neumann and Robin
boundary conditions (Semion and Alexander, 2006).

THEORETICAL BACKGROUND

The problem under consideration here is a boundary
value problem, in which the EM field vectors (the electric
field E and the magnetic field H) are governed by a
coupled vector wave equation (partial differential
equation) derived from the Maxwell’s equation, Fig. 1.
There are two boundary conditions to be satisfied by the
fields; namely the one satisfied on the periodic surface
and the one satisfied at infinity. The latter condition is
usually referred to as the radiation condition In
homogeneous or slowly varying nonmagnetic media, the
coupled vector wave equation decouples and reduces to
the well-known Helmholtz equation (partial differential
equation of the hyperbolic type) governing the individual
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Fig. 1: Geometry of the problem of propagation over a one-dimensional approximately periodic surface. (a) Horizontally
polarized (TE) wave, (b) vertically polarized (TM) wave and (¢) geometrical representation of the surface including
the incident direction. In this figure, K, represents a non-attenuated wave vector of the incident wave direction
of propagation, x; = 5(z) represents the one-dimensional surface and S, is the vertical plane, on which the initial

field

scalar components of the field vectors. In many practical
situations, the surfaces of mterest have one-dimensicnal
roughness, i.e., roughness that is confined to a plane, say
the xz-plane, in a Cartesian coordinate system (Fig. 1).
This is frequently the case for the ocean surface when the
wind 1s blowing predominantly i one direction. For this
particular scenario and without loss of generality, the
general EM problem with arbitrary polarization may be
decomposed mto two decoupled problems, namely the TE
and TM problems as illustrated in Fig. 1. In this case, the
relevant Helmholtz equation is written for the E,
component in the TE case and for the H, component in
the TM case. These equations are then solved subjected
to the relevant boundary conditions mentioned above.

The approximations can be used to consider the
scattering of a plane wave from a periodic surface as
shown in Fig. 1. Here and hereafter, we shall use as
%, ¥ and Z the unit Cartesian vectors;

k =K k=-k %+k,z
as a wave vector where:

w
C

K

1

1s the wave number in incident region,
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k=-cosO X +sind, z

1s @ unit vector along the direction of propagation and ¢
the speed of light in vacuum; and E; and H, (to be defined
later) are complex amplitudes dependmng on the
polarization of the incident plane wave. Because of the
periodicity of the surface, the scattered waves will
propagate in discrete Floquet modes (Chicone, 199%). For
this, the modes with longitudinal wave numbers larger
than w/c will be slow waves. This is because

2
k= (EJ k. andk, >
C C

for k,, to be imaginary as will be discussed mn details later.
The scattered waves may be detected using an exact
method or a simplified one based on Rayleigh's
hypothesis (Rayleigh, 1907). The main difference 1s that
treatment of the scattered waves in the region S_, <x<3,__,
presents a special scattering problem as the scattered
waves there propagate up and down For x>S,., the
scattered waves move only upwards.

According to Rayleigh's hypothesis, if S, ,-S.. is
sufficiently smaller than L, where, L, 1s the approximated
period along the z-direction shown n Fig. 1, we may omit
the scattered waves, which propagate downwards in the
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region S.,<x<S,. Then, we match the boundary
conditions along the actual boundary. The Rayleigh
hypothesis 15 not vald for all periodic surfaces
Lakhtakia and Depme (1993). It has been shown
(Lakhtakia and Depine, 1993; Kazandjian, 1996) that it is
valid for a sinusoidal surface, if the maximum slope of the
surface 13 <0.448 (Gigl and Inchaussandague, 2004), that
can be satisfied by the following conditions:

0.448

S <1, =0.1426L, (1)
T

roax

-3

tnin

For the general treatment, we express the field of the
scattered waves in terms of the (unknown) value of the
field and its normal derivative at the boundary, by use of
the Green's functions (Chan et al, 1991) (Huygens'
principle). For x<S_, (extended boundary), the mecident
wave and the downward propagating waves must give
zero total field (extinction theorem) (Ricardo and
Lakhtakia, 2005). From this relation we specify the Floquet
harmonics (Ricardo and Lakhtakia, 20035) of the field and
1ts normal derivative at the boundary. Then, we calculate
the scattered field for xS, which is due to the upward
propagating discrete Floquet modes with known values at

the boundary.

Geometrical model and physical considerations: The
following assumptions will be based on the geometrical
model of Fig. 1. First, we will continue considering that
there 1s no variation a long y: /9y = 0. Then, consider the
following setup shown in Fig. 1 (¢) shown before, where

(2

N=CcosaX—sinez
representing a unit vector normal to the surface, pointing

away from the conductor and

dz

2
AL =Jdx* + dz* = 1+[ds} dz

as infinitesimal length along the boundary. The unit
vector can be rewritten as:

. d3,
-——Z
- dz X —tanolz
= (3)
) {dsjz N+ tan o
+ -
dz

While, the wave vector of the incident wave as
specified before becomes
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(h

= 9(*005& X +sinf, z)
c

Floquet modes: After the determination of the Floquet
expansion coefficients, the diffraction efficiencies for the
propagating plane wave components of the reflected or
refracted fields can be calculated as the ratio between the
diffracted and the incident intensities (Ricardo and
Lakhtakia, 2005). For the reflected Floquet harmonics
{(Lakhtalda and Depine, 1993), Let:

E (x,zt)=Ex, z)e (5)
If the pericd of the boundary 13 L,, then:
ik, Ly
E,(x,z+L,)=¢e E E, (x,7) (6)
Or:
=k (z+L,) _ —ikz
E,(x,z+L,)e "¢ = E_(x,2)e ()

Therefore Ey(z)eﬂkmz , 18 periodic with period L, and
thus by Fourler series can be written as:

o= 1| k; +112—TE |z o=
—ik. z = z iz 8
E, (z)e ket — Z Eyne[ L] = Z Eynek (&)
Where:
kmfkm+ngg &)
LZ
And thus for the x component:
CDZ
kXﬂ - Tz _kin (1 0)

RAYLEIGH METHOD AND HYPOTHESIS

For that purpose, we mvoke the Rayleigh hypothesis
(Rayleigh, 1907; Christiansen and Klemnman, 1996; Ramm
and Gutman, 2004) that 1s, we assume that the electric field
of the incident wave is

(1)

ik, z—ik, ®
Ew =B
and Scattered field 1s

Esy — EU E Rr]i)eﬂ(mzﬂkm‘x (1 2)
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In the case of the magnetic field, the incident wave To determine the unknown coefficient R® , we match
can be written as (Gregg, 2002; Giorgio and Gasca, 1995):; the boundary conditions on the surface X, = 3(z) as:

=0 (17)

z=x;=5(z) N

ik, 2k x
=Hpe™ (13) Ey:(Eiy+E )

sy

I;Iiy

That 1s:
And the scattered field:

- iz i ’ﬁsz $tz) 18
e—ikixs(z)+ Z Rfe L, e i =0 ( )

H,, = H, 3 Rje"= 9
i By letting
Incident waves and scattered wave expansions
Eq. 11-14, which are strictly valid outside the corrugation L a——

region. With these definitions, we are able to write the L,
following Floquet expansions that represent rigorously

the electromagnetic fields in the region S, <x<S.z  where, z then becomes as:
(Lakhtakia and Depine, 1993).

The family of functions W
z=L_ —
fIm
[, o<
and 1f we multiply both sides of the above equation by

constitute the so-called Rayleigh basis. Introducing

expansions Eq. 11-14 into the boundary conditions and —im 2l
thereafter projecting the resulting equations into the :
Rayleigh basis, we obtain a matrix equation for the
diffraction amplitudes in terms of E, and H, Such  then by integrating over L,:
hypothesis is generally applicable to TE and TM modes.

We shall consider both modes n our analysis. 1 pom —1k,xS{in]—imw
e = dw =
£
Dirichlet problem (TE): We consider the two - - (19)
dimensional Dirichlet boundary-value problem for the RERS RP J‘Z“ el(mn)we1 F’kms[LZEJ oo
Helmholtz equation in a non-locally perturbed half-plane 2 e
(Axler et al., 2004; Ebenfelt and Viscardi, 2004). This
problem models the time-harmonic EM scattering by a Let:
one-dimensional, infinite, smooth, perfectly conducting = S[Lzﬂ]
surface; the same problem arises in acoustic scattering by KP = Lj.znei(n*mee EE S (20
a sound-soft rough surface where the total field vamshes; -
the same  problem  models  two-dimensional
electromagnetic scattering by a perfectly conducting, A - 1 Zne_lmweflkmS{Lz%]dw (21)
mfinite, smooth surface in the transverse magnetic m 74 Jo
polarization case (DeSanto ef al., 1998). The Dirichlet  Then:
problem Hq. (11-12) (TE mode with E, = 0 as shown in Fig. = L . 29
1a) boundary surface was considered as: E KRy =Ag @2)
or
X, = 3(z) = -5, 005{275]_‘2} (15
: KP | [RP| =|Al (23)
Wlﬂ’l |: :|mxn |: :|nx1 |: :|mx1
16
S <0.0713L, (16) The above equation may be truncated. The solution
will be:

and k,, and k,, are as given before and without including
the downward moving modes with as ¢ *=* Rayleigh o b1 o (24)
hypothesis states (Lakhtakia and Depine, 1993). [R lm B [Km“ :|nxm [A"‘ lnxl

80
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Now, if we assume that the surface is sinusoidal with
Smax - Smm - SD:

Z

Xq —S(z)—SDco.{%cLiJ—Sn cos(w) (25)

The integrals for K”,, and A", are of the form:

L Znemwhucns(W)dW :lilm“l‘ml(u) (26)
20
Therefore,
1 am - |m
AD = [Termriste iy — ity e sy (7)
27 Y0
And:

1 pon - - « m—
K b _ ( Jwr—ike,, 5 (w) m—1
J‘ o (nmm)w ik S eos(w) g i | ‘J‘min‘(] SU)

o
(28)
For slow waves with k, = i|k,,|, then
J‘m—n\ (kxnsu) = i‘rrrn‘l|m—n| ( km ‘ SU ) (29)
KP :I_(k s) (30)
mn |m n‘ zn [0
Accordingly, the incident wave becomes:
EIY — Eueﬂ(mzﬂkixxeﬂmt (31)
Moreover, the scattered waves becomes:
EW — Eu 2 Rfeikmzhkmxe—mt (32)
Where:
2 2
k, =k, +nsand k, =,/ > K,
L c

Z

With the solution as specified by:

RN 2

and A", K" as specified in Eq. 27-30.

Neuman problem (TM): The TM mode problem can be
derived by considering the following Neuman Problem
boundary surface:

X, = 8(z) = -5, 005(27:5]

Z

with: 5,<0.0713L,.
For the TM problem specified in Eq. (13) and (14), the
boundary condition for this case can be specified as:

oH (34)
[(VHY)X fz}xﬁ = any ¥
that is:
oH Rk
=7 =n-VH =0 (35)
aIl x=%g =5 (z) x=x5=5 (z)
or:
N 5. a3 .0
X_EZ o Xg+ ZE H,
X=X (36)
9 89 o
ox  Qzaz )|
which can be rewritten as:
— 1ngz
,iklxe-ik,xs(z) 4 2 ikafe L gikuS@
il e 37
7% 1% y )
dz| ¥ ik, RYe = et

n=—ce

or as can be simplified to:

i mﬂz
k1x +§klz e—nk;xS(z) — 2 kxn _@km Rl:»le L, elkmS(z)
dz dz

(38)
By multiplying both sides by

in
—im=—z
Ly

then by mtegrating over L, and make the changes as for
the Dirichlet case, we can write this as:

RS LIREES o)

The above equation may be truncated and the
solution will be:
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LSNPS (40
where:
2 dS
w1 o “L_ﬁkiz} (41)
Al =, :

kil
25

—1kms[ 3 ]
e ™e dw

2mds) }

L, dz (42)

Krljm _ LJ‘Zn(kxn

2i 0 . w
i(n—m)w ' X“S[LZE]
e e dw

By applying these results for the sinuscidal surface
with

X, —S(z)——SUcos{ZnLZJ——SU cos(w) (43)

Z

ds .
Ezsnsm(w)

In addition, using the identity

L znemqwim :os(w)dw _ lilm‘J (u)
290 ‘ml

as before and by deriving the other equality as follows:

L-[znsinwe1mwi1ucus(w)dw —
2x e

) (44)
L ng —¢ eimwiiu:as(w)dw
20 i2
which can be written as:
1 pon
7]‘ sin Welmw:hu cns(w)dw —
27 V0 (45)
17 . ¢m - t|m—
@ )
Therefore,
AE :kmllm‘J‘ml(kmSU)
s [+
S L SN (46)

] .m-1
O

Kl =k, ks

T[SU Kk i_‘m_n+1‘Jlm7n+l|(kxﬂSU) - (47)

+1 S
Lo USRI ( S

For slow waves with k,, = ik, then

Voo Cea80 =" (s} (8)
And:
K'Ij‘" :i kXﬂ I‘m—n‘ ( kxn SD)
S, Yo ([klS0) - (49)

Lo ecyl[als)

Therefore, the incident wave becomes:

_ il 2—tkp 2 —imt 50
H, =Hge e (30)
Moreover, the scattered waves becomes:

HSY — Hn i R:leﬂ(mzﬂkmxeﬂmt (51)

n=—ce

Where, k,, and k, are the same as for Dirichlet
Problem (TE) and for R, the selution has the form:

[Re], =[x L[], oY
With: A" K", as specified in Eq. 46-49.
CONCLUSION

A model for investigating the EM scattering by an
arbitrarily periodic surface has been developed. Before
dealing with the scattering problem, EM fields in the
medium are solved first using the method of separation of
variables and then formulated in terms of the spherical
vector wave functions in a very compact form. A
procedure based on Rayleigh hypothesis 1s then applied
1n the analysis of the scattering problem. The scattered
field and the incident field are related by imposing the
boundary conditions and making use of the equivalence
principle. The scattered fields are derived by imposing
both Dirichlet (TE) and Neuman (TM) conditions for the
vector wave functions. The important point in this study
is that the derived formula allows easy computational
calculations of diffracted fields near the aperture.
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In another incoming study, the combined effect of
atmospheric conditions and surface roughness on the
propagation and scattering problem will be included. Such
type of research 1s in progress
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