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Abstract: This study proposes a novel method based on Discrete Orthogenal S-Transform (DOST) and
Wavelet Support Vector Machines (WSVM) for detection and classification of power quality disturbances.
DOS-transform is mainly used to extract features of power quality disturbances and support vector machines

are mainly used to construct a multi-class classifier, which can classify power quality disturbances according

to the extracted features. Results of simulation and analysis demonstrate that the proposed method can achieve
higher correct identification rate, better convergence property and less training time compared with the method
based on Probabilistic Neural Network (PNN). Therefore, through this method power quality disturbances can
be detected and classified effectively, accurately and reliably.
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INTRODUCTION

With the ever-growing demand of electricity m the
modern civilized society, the total generation of electricity
has also mcreased remarkably n the last few decades. But
the quality of electricity has deteriorated to such an extent
that it has become an increasing concern for electric
utilities and their customers. The term power quality 1s
generally used to express the variation of voltage, current
or frequency with respect to steady state simusoidal
waveform at a nominal system frequency (Arrillaga ef af.,
2000; Bollen, 2000). Thus, power quality is intricately
related to power system disturbances. Such disturbances
are created mostly due to extensive use of power
electronic devices and non-linear loads in electrical power
system and consequently the sensitive detection and
accurate classificaion of power disturbances have
become very much necessary to ensure power quality
(Vetrivel et al., 2007). STFT (Santoso et al., 1996) cannot
be wused successfully to analyze transient signals
comprising both high and low frequency components.
Although, wavelet (Santoso ef al., 1997) Multi-Resolution
Analysis (MRA) combined with a large number of neural
networks provides efficient classification of Power Quality
(PQ) events, the time-domain featured disturbances, such
as sags, swells, etc. may not easily be classified. In

addition, frequency components of some of the important
disturbance are not extracted precisely by wavelet
transform (Gouda ef al., 1999).

A more recent time-frequency representation, the
S-transform (Stockwell ef al., 1996, 1997a; Reddy ef af.,
2004), is similar to a continuous wavelet transform in
having progressive resolution but unlike the wavelet
transform the S-transform retains absolutely referenced
phase information. Absolutely referenced phase
information 1s the phase information given by the 3-
transform refers to the argument of the sinusoid at zero
time (which is the same meaning of phase given by the
fourier transform). The S-transform not only estimates the
local power spectrum, but also the local phase spectrum.
One drawback to the S-transform 1s the size of its
redundant representation of the time-frequency plane. It
1s apparent that a more efficient representation of the
S-transform is needed, one that provides a framework on,
which reduced sampling can be laid. This study, therefore,
presents a new transform, known as Discrete Orthogonal
S-transform (DOST) (Stockwell, 2007). Recently, ST and
DOST are being used in Power quality analysis DOST is
mainly used to extract features of PQ) disturbances and
WSVMs are mainly used to construct a multi-class
classifier to classify PQ disturbances according to the
extracted features.
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S-TRANSFORM, DOST AND WSVM

S-transform: The CWT W(t, d) of a function h (t) is
defined as:
j ht

w(t-1,d)dt D

where, w (T, d) is a scaled replica of the fundamental
mother wavelet, the dilation determines the width of the
wavelet and this controls the resolution. The S-transform
(Stockwell et al., 1996, 1997a) is obtained by multiplying
the CWT with a phase factor, as defined:

S(t,f) =" W(r,d) (2)
where, the mother wavelet for this particular case is

defined as:
NN
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In Eq. (2) dilation factor d is inverse of frequency f.
Thus, final form of the continuous S-transform 1s obtained

as:
® (t- t) £2
J' ﬂlnﬁdt (4)
and width of the Gaussian window is
£)=T=1/f| (3)

Since, S-transform is a representation of local spectra,
Fourier or time average spectrum can be directly obtained
by averaging local spectra through inverse S transform, as

given by Eq. (6):
}%J“ﬁdf

The discrete S-transform 1s defined as follows. Let,
h (kT), k=0,1, ......., N-1 denote a discrete time series
corresponding to h (t) with a time sampling interval of T.
The discrete Fourier transform of h (kT) 1s obtained as:

i
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h(t)= T{Ts(t,f)dt ()
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where, n = 0,1, N-1. In the discrete case the
S-transform  (Stockwell et al, 1996, 1997a), is the
projection of the vector defined by time series h (kT) onto
a spanning set of vectors. Spanning vectors are not

&0

orthogonal and elements of S-transform are not
independent. Each basis vector is divided into N localized
vectors by an element by-element product with N shafted
Gaussian windows. Usmg Eg. (4), S-transform of a
discrete time series h (kT) is obtained by letting f tending
to n/(NT) and t tending to jT. Thus, discrete S-transform

1s given by Eq. (8):
N-1
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where,

o)

andg=1b;n#0,n=1,234 ... .N-1,;=-m=0,1234

.., N-1; N = total number of samples. A typical value
of b has been taken in the range of 0.333-5 for different
resolutions. For low frequencies, a high value of b is
chosen and for lugh frequencies, lower value of b 1s
chosen to provide suitable frequency resolutions. For
n = 0, the S-transform assumes the form represented by
Eq. (10).

1N1

i

The amplitude of S-matrix is obtained from |S(jT,
n/NT)). Equation 10 averages zero {requency
components. The average of amplitude of S-matrix over
time results in Fourier spectrum.

S(jT,0)= (10)

Discrete orthogonal s-transform: There are several
reasons to desire an orthonormal time-frequency version
of the S-transform (Stockwell, 2007). As each point of the
result is linearly independent from any other peint, the
transformation matrix (taking the time series to the DOST
representation) 1s orthogonal, meaning that the nverse
matrix is equal to the complex conjugate transpose. The
efficient representation of the S-transform can be defined
as the inner products between a time series hikT) and the
basis functions defined as a function of (kT), with the
parameters v (a frequency variable indicative of the center
of a frequency band and analogous to the voice of the
wavelet transform), B (indicating the width of the
frequency band) and t© (a time variable mdicating the time
localization).

s{h[kT]} =8 [TT —J Zh[kT]S[ sqlkr] D)

These basis functions S,,;,,(kT ) for the general case
are defined as:
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(12)

At this point, the sampling of the time-frequency
space has not yet been determimed. Rules must be applied
to the sampling of the time-frequency space to ensure
orthogonality. These rules are as follows:

e Rulel,t=0/1,.. . p-1

¢ Rule 2, v and p must be selected such that each
Fourier frequency sample is used once and only
ongce.

Tmplicit in this definition is the phase correction of the
S-transform that distinguishes it from the wavelet or filter
bank approach. Here the parameters v, P, T are integers
defined such that the functions do form a basis. For each
voice, there are one or more local time samples (1), this
number being equal to B (Rule 1) thus, the wider the
frequency resolution {large B), the more samples in time
(large 7). This can be seen as a comsequence of the
uncertainty principle. Distinct from a wavelet function,
these basis functions have no vamshing moments. These
basis functions are not translations of a single function
and they are not self-similar.

Orthonormal basis functions with octave sampling: In
order to compare, the DOST with orthonormal wavelet
transforms and with the S-transform, an octave sampling
of the time-frequency domain is illustrated. This has the
property of progressive resolution that both the S-
transform and wavelet transforms share. Octave sampling
implies that the voice bandwidth doubles for each
increasing voice (as sampling allows).

By imposing specific rules on the basis functions
(here octave sampling) it implies a strict definition for v
and P. By mtroducing a new variable p, which
corresponds  to the octave number p=10,1, 2, ..., log2
(N) -1 one can define all the parameters (v, B, T ) of Eq. 12
in terms of p as follows:

For p>1, we have:

p=2, .. log2(N)-1, (13)
v=2(p-1)+2(p-2), (14)

p=2(p-1) (15)
t1=0,1,..,2(p-1)-1. (16)

Forthe case p=0, then v=0, =1 and t = 0. Also
whenp=1,thenv=1,p=1and T =0. Thus, the DOST

&1

basis functions for octave sampling of a time series is
given as follows (by application of Eq. (13-16) mto Eq.

(12)):
{ex a2 | By }
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Derivation of the basis functions: By extending filter bank
theory, in combination with the unique phase correction
of the S-transform, the time domain basis functions for the
S-transform are developed. The novel idea is to create a
new orthonormal basis for a time-frequency
representation by taking linear combinations of the
onginal Fourier basis functions in band limited subspaces.
Within a frequency band (1.e., a particular voice), several
orthogonal basis functions are formed by a linear
combination of the Fourier basis functions in that
frequency band. There are [ components in this
operation. Thus, P basis functions can be derived by
applying the appropriate phase functions to the
components (where each of the p basis functions is
indexed by T = 0, 1, .., B-1). The key to creating
orthogonal fuinctions 1s the careful selection of the
frequency shift applied to the Fourier basis functions.
This action is the analog of the phase correction of the
S-transform. This 13 where the absolutely referenced
phase information originates and it 1s what distinguishes
these basis functions from wavelets (i.e., they are not self-
similar). The basis functions can be derived by starting
with a partitioning of the specttum (a sumple restricted
sum of complex-valued Fourier basis functions) defined in
the time domain (function of (kT)), centered at frequency
v with a bandwidth of B and applying the appropriate
phase and frequency shifts:

v+B/2-1

k
i2n—f
> exp{l ke }

fv_pf2

exp [i21‘c % f} exp [4 n

S[kT], ==
[v.f.1] B (18)

N
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where, 14/} is a normalization factor to insure
orthonormality of the basis functions.

Thus, the basis fimction for the discrete orthonormal
S-transform (DOST) of voice frequency v, bandwidth
and time index T can be written as:

—int v+ p/2-1

. k 1
T ﬁ > exp[lQTc[NB] f} (19)

S [kT][V Z,
Application of the identity
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C l—x") (20)

c+ex4..4ox™ =
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to Eq. (19) leads to Eq. (12). As canbe seen in Eq. (19), the
function has no poles (P is always greater than zero). In
Eq. (12), there 18 an apparent pole where the denommator
goes to zero (where k/N—t/B), but application of
T.Hopitals rule shows that the limit of the basis function as
k/N—1/p is well behaved and equal to:

lim S(KT}), , . =Be™ 2L

KNy

One advantage of this method is that one can directly
calculate any voice, without having to iterate through a
series of ntermediate steps. Also, there 1s no filter design
involved nor any upsampling or downsampling algorithms
required. Another advantage is that it allows one to
directly apply the ideas of power spectrum estimation,
such as applying windows and apodizing functions, to
the analysis of the local spectrum of a time series.

Note that in a departure from filter banlk theory, the
sum 1s centered on the voice frequency v. In other words,
a frequency translation has been applied. The operation
of calculating the inner product of a time series with this
basis function not equivalent to a simple filtering
operation (in the asymptotically sinple case of the time
series consisting of an oscillating smusoid, the resulting
voice will be a constant, in amplitude and phase, for each
time sample). This frequency shift is vital when the
characteristic of absolutely referenced phase imformation
(and cross local spectrum analysis and generalized
instantaneous frequency) is described and is the
distinguishing  difference between the S-transform
approach and the wavelet/filter bank approach. This shift
n frequency 1s the key feature of the original S-transform.
In Eq. (17), the n voice S (jT, n/NT ) has the same
frequency translation applied by the shift of the spectrum
H ((m +n)/NT ) by n which centers the spectrum around
the n frequency.

-2w*m® g

N-1
S| T, =S H M e W neo
NT |~ = | NT

It 13 precisely, this property of the basis functions
that provides absolutely referenced phase information
and it is also this property that implies that the basis
functions are not self-sumilar. It 15 easy to show that the
basis functions are mndeed orthonormal and have compact
support in frequency. They are not compactly supported
in time, but they are local. The property of compact
support refers to a particular transform. An orthonormal

(22)
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wavelet does not have compact support under a Fourier
transform. By the uncertainty principle, one cannot have
a compactly supported function, which has a compact
Fourier transform. These basis functions are compact in
frequency and also local in time, while maintaining
orthogonality. All that is required is that the v and P
values are chosen such that the bandwidths do not
overlap and that all discrete frequencies are sampled. The
utility of these basis functions is that they create a road
map for one to overlap bandwidths and oversample in
time in an arbitrary (perhaps data adaptive) manner to
achieve any deswed sampling of the time-frequency
space.

The DOST has the following properties: Exact analytical
defimtion of a basis for the S-transform.

+  An orthogonal time-frequency transform from, which
the discrete Fourier transform can be derived as a
special case.

¢+ An orthogonal time-frequency representation that
collapses over the time variable to exactly give the
discrete Fourier transform spectrum.

»  Absolutely referenced phase, thus giving meamng to
the phase of an orthonormal time-frequency
representation.

»  The ability to directly compare the phase of two time
series mn a localized cross spectral analysis.

¢+ The ability to employ a channel instantaneous
frequency to each signal of the DOST.

» A general defimtion of a time-frequency
representation to which one can apply any of the
standard windows of power spectrum analysis in
order to perform a localized power spectrum analysis.

* The DOST can be extended in a straightforward
method to higher dimensions for applications such as
image processing and volumetric data analysis, as
has been done with the S-transform.

Wavelet support vector machine classifier: SVM has
become a hot research topic in the mnternational machine
learning field because of its excellent statistical learning
performance and superior classification performance
(Burges, 1998; Lin and Hsu, 2002, Mitra et al., 2002).
Simply, SVM can be comprehended as follows: it divides
two specified training samples, which belong to two
different categories through constructing an Optimal
Separating Hyperplane (OSH) either in the original space
or in the mapped higher dimensional space. The principle
of constructing OSH 1s to guarantee that the distance
between each trammmng sample and OSH should be
MEx I,
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If data are linearly separable in the input space, a
binary classification task is taken into account. Let
1y} (12i2N) be a linearly separable set. Where, x, € R®,
v, € {-1, 1} and y, are labels of categories. The general
expression of the lmnear discrimination function m d-
dimension space 1s defined as g (x) = w.x + b and the
corresponding equation of OSH 1s as follows: w.x+b = 0.
Normalize g (x) and make all the x; meet [g(x)| = 1, that is,
the samples, which are the closest to OSH meet |g(x)| = 1.
Hence, the separating interval is equal to 2/|w| and solving
OSH is equivalent to minimizin g|w|. The object function
is as follows:

min ¢{w)= %HWHZ (23)

Subject to the constramts:
vi(wx +b)21,1=1, ..., N (24
When adopting Lagrangian algorithm and

mtroducing Lagrangian multipliers ¢ = {a,... oy}, the
problem mentioned above can be converted into a
quadratic programming problem and OSH can also be
solved. Where:

W= DOV X,
1

are the samples only appearing in the separating interval
planes. These samples are named as support vectors and
the classification function is defined as follows:

f(x):sgn(E:otlylx1 .x+b] (25)

If data are not linearly separable in the nput space,
the object function is turned into as follows:

N
min ¢(W,(:):%HWH2 +C[2§1J (26)
i=1
where,
£ = Slack varable.
C = Penalty factor.

Simultaneously, through a non-linear transform ¢(.)
the input space is mapped into a higher dimensional space
named feature space in which OSH can be solved.
Additionally, the inner product calculation is turned into
K (x, x) = @ (x).® (x;); where, K (x, x) named kernel
function 15 defined as imer product in Hilbert space.
Thus, the final decision function for classification can be
represented as follows:

63

f(x):sgn[ZaiyiK(x,xi).x+bJ (27)

Wavelet kernels with SVMs will construct WSVMs
(Zhang et al., 2004). The existence of wavelet kemels 1s
proven by results of theoretic analysis. Our wavelet kernel
is a kind of multidimensional wavelet function that can
approximate arbitrary functions. Tt is not surprising that
wavelet kernel gives better approximation than Gaussian
kemel, Notice that the wavelet kernel 1s orthonormal
(or orthonormal approximately), whereas the Gaussian
kernel is not. In other words, the Gaussian kernel is
correlative or even redundancy, which is the possible
reason why the traming speed of the wavelet kernel SVM
is slightly faster than the Gaussian kernel SVM. We
construct a translation-invariant wavelet kernel by a
wavelet function adopted in

hix)=cos(1.75x)exp(— X—;) (28)

Given the mother wavelet (28) and the dilation a, a, x
e R Ifx, x; ¢ RY, the wavelet kernel of this mother

wavelet 1s
N
K(x, %)= Hh[ }
j=1

29
T | 755 X =X = =
71;[ cos| 1.75x n exp| — %

XJ

1
X
ai

which is an admissible SV kernel, where the, ¥, denotes
the jth component of the ith traming example.

PROPOSED ALGORITHM FOR POWER QUALITY
ANALYSIS USING DOST WITH WSVM

The proposed method of DOST with WSVM classifier
15 llustrated in Fig. 1. There are mainly two tasks for
detection and classification of PQ disturbances, one is
extracting features and the other is recognition and
classification. DOST has excellent time-frequency analysis
performance suitable for analyzing non-stationary signals
and SVM exhibits excellent statistical learning ability
suitable for recognition and classification. Therefore, this
paper proposes a novel method based on DOST and
WSVMs detection and classification of PQ
disturbances. DOST is mainly used to extract features of
PQ disturbances and WSVMs are mainly used to
classify PQ
disturbances according to the extracted features.

for

construct a multi-class classifier to
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Pre-processing: The pre-processing stage involves two
steps. In the 1st step, the captured signal is processed
with the signal processing technique 1.e., DOS-
transform. This way time domain signal is converted
mto a time-frequency contour and the DOS-transform
matrix so obtained contains the useful features of the
disturbance signal In the 2nd step, the useful features
are extracted from the DOS-transform matrix. The
features are as standard deviation of the highest DOS-
transform contour, the energy of the highest DOS-
transform contour, variance of the highest DO S-transform
contour, difference between the highest and lowest
value of the DOS-transform contour with a Gaussian
window of spread 1.

Multi-class WSVM classification tree: An original SVM
can be implemented mamly by two algorithms: 1-to-
multi algorithm and 1-to-1 algorithm. The 1-to-multi
algorithm solves an N-class problem through N binary
classifiers. The ith SVM takes samples of the ith class as
the positive training samples and the rest samples as the
negative samples. The disadvantages of the 1-te multi
algorithm are as follow: the number of training samples is
large, traiming 1s difficult and the generalization error is
unbounded. The 1-to-1 algorithm constructs all the
binary with N-class
samples and each 15 only tramned by the
binary-class training samples of the N classes, which
results m constructing N(N-1)22 classifiers. It 1s
determined by the voting method that which class the
specified sample belongs to. The disadvantages of the

possible classifiers training

classifier

1-to-1 algorithm are as follow: the generalization error
15 unbounded and the number of classifiers rapidly

increases with the number of classes. Additionally, the
classification dead zone problem perhaps exists mn the
previous two algorithms.

In order to overcome the disadvantages of the two
algorithms mentioned above, the thought of cluster
analysis 18 drawn from pattern recognition and the multi-
class SVM classification tree is constructed through the
grade-cluster method to classify PQ disturbances. The
basic thought is as follows: firstly the PQ disturbance set
needing to be classified is divided into two subsets
according to the similarity of the chosen feature vectors
and then the two subsets are divided into two subsets
separately again according to the same principle. The
division will continue until the classification task 1s
fimshed. The multi-class SVM classification tree of PQ
disturbances 1s shown in Fig. 2. It can be seen that there

Power signal with
distmbnTe (Tnput)

Feature extraction
using DOST

!

Pre-processing

Data classification
using WSVM

Type of disturbance
(Output)

Fig. 1: Feature extraction and classification process

{Puresinewave, Sag, Swell, Momentary interruption, Oscillation Transient, Harmonics}

N

SVMI {Momentary interruption, oscillation transient, harmonies}

{Purczinewave, Sag, Swell}

VAN

{Puresinewave) SVM2 {Sag, Swell}

{Momentary
interruption}

O\

SVIM3 {Oscillation transien, harmonics}

AN PN

{Sag} SVM4 {Swell}

Fig. 2: Multi-class WSVM classification tree

{Oscillation transient} §yp5 {Harmonics}
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Fig. 3: Typical power quality disturbance categories

are 4 SVMs in the multi-class SVM application tree and
each SVM chooses different feature vector to implement
binary classification. WSVM has less traming time and
less testing time than ANN.

Power disturbance data set: The entire research presented
mn this study 1s tested with standard Power Disturbance
set given in the Fig. 3 to recognize type A of pure
sinewave and four types of power quality disturbances
including type B voltage sag, type C voltage swell, type

0.2 — T T T T T

0 20 40 60 80 100 120 140 160 180 200
Samples

Momentary interruption
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Samples
15" 10™
(3] Harmonics
1 -
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0 20 40 60 B0 100 120 140 160 180 200
Samples

D interruption, type E oscillatory transient and type F
harmonics. Frequency (f) is normalized with respect to a
base frequency.

RESULTS AND DISCUSSION

The power system disturbance signals such as swell,
sag, oscillatory transients, momentary interruption etc.
must be detected and classified properly to mtiate
corrective measures to ensure quality of power. The
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modified discrete wavelet transform, termed az DO3-

transform, seems to be a powerful tool for detection,
localizationn  atd  classification  of  power system

i
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Fig 7: DOET- cordour for woltage sag
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Fig 8: DOET- cordour For woltage swell

dishabanices compared to Bhott Time Fowier Transform
(STFT) as well as Wawvelet Transforms (WT). DIOE-
transform generates contours, which are suitable for
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clagsification by simple Wsoa itnspection wlile wawvelet
tratsfortns (W) DO3-tratnsform  generates cordours
which are suitable for dassification by simple wisud
ingpecti onunlike wavelet transform that requires specific
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Fig 13: DO3T-contour for impnid se transient
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Fig 14 DO3AT-contour (3-I0 for dtngnd e trans ent

methods  like Standard Dult  resolution  analysis
(Std MEA) for classification. DOS-transform has been
employedto a fer tyrpes of dishwbatces inthis article atd
caty be applied for other types of dstwbances such as
notches, glitches ete.

Figure 4 shows the detaled wersion of Fig. 3 ¢ after
applicati on of dbd wavelet in four lewel of decomposition
Although,  detafled  wversionn  indicates presence of
hatrtm ordes at different times, bt can’t be dassified.
Figure 5-14, show the 2-D, 3-D mesh plot for various
sighals. From the plot, magnitade, frequency  and time
irform ation can be readily obtained to detect, localize and
wisually classify sighal events in fhree-dimensional space.

The excellent statistical learning ability of W2V
cotmpatred with ANM, WAV exhitits more excellent
petform ances sach as no local optisosm problem, no over-
fit or undes-fit proklem, better cotrre gence property, less
training samples, higher cotrect identification rate and
higher reliability. Inaddition comparison of classification
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Table 1: Comparison of classification results

Proposed method Wavelet transform-based PNN Wavelet with SVM

No of

data Accuracy Accuracy Accuracy
Type sets Correctly  Incorrect  rate (%) Correctly Incorrect rate (%) Correctly Incomrect  rate (%)
Pure sine wave 100 100 100 100 100 100 - 100
Sag 100 96 4 96 92 8 92 94 6 94
Swell 100 94 6 94 92 8 92 93 7 93
Momentary
interruption 100 94 6 94 92 8 92 93 7 93
Oscillatory
transient 100 94 6 94 90 10 20 93 7 93
Harmonics 100 94 6 94 92 8 92 94 6 94
Total of accuracy rate 95.3% 93 % 94.5%

results between W3VM and ANN 1s shown m Table 1.
WSVM has a higher correct 1dentification rate than the
method based on Probabilistic Neural Network.

CONCLUSION

The experimental results showed that the proposed
method has the ability of recognizing and classifying
different power disturbance types efficiently and it has
the potential to enhance the performance of the power
transient recorder with real-time processing capability.
Because the distorted signals in this study were
generated by MatLab, employing real distorted signals
measured by the digital recorder to improve the proposed
method 1s one of our future works. The further research 1s
about to focus on comparing DOST with Multiwavelets,
Ridgelets as feature extractors.
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